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• A simple way to turn LLMs into task-specific models is through fine-
tuning


- Identical to what we saw with BERT: fine-tune with annotated data


- You benefit from the rich representations of the LLM


• LLMs offer a completely new mode of operation that does not 
require any change to their parameters: prompting 

- With or without annotated examples: zero-shot or in-context 
learning (few-shot)


- With or without intermediate reasoning steps: chain-of-thought 
prompting
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• Input: single unlabeled example 


• Output: the label 


• The task (and output) can be any 
text-to-text task: classification, 
summarization, translation


• Pre-processing: wrap  with a 
template using a verbalizer 


• The template controls the output

x̄

ȳ

x̄
v

Zero-shot Prompting
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the movie’s acting could’ve 
been better, but the visuals and 
directing were top-notch.

x̄ =

Review: the movie’s acting 
could’ve been better, but the visuals 
and directing were top-notch. 
Out of positive, negative, or neutral 
this review is

v(x̄) =

LLM

neutral ȳ
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• We generate from the model to get the output


- What if the model output does not fit the intended format, even 
if it is semantically correct?


‣ “… how many stars on a scale of four? 4” vs.  
“… how many stars on a scale of four? four stars”


- Or maybe not even semantically correct, but just irrelevant?

Constrained Output
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• We generate from the model to get the output


- What if the model output does not fit the intended format, even 
if it is semantically correct?


‣ “… how many stars on a scale of four? 4” vs.  
“… how many stars on a scale of four? four stars”


• Generate with constraints:


- Compare the probabilities of all possible outputs according to 
your format


arg maxȳ∈{1,2,3,4} p(ȳ |v(x̄))

Constrained Output
Zero-shot Prompting
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• Generate with constraints:


- Compare the probabilities of all possible outputs according to 
your format





- If the label is a single token ( ), just compare next token 
probabilities over labels


- Otherwise?

arg maxȳ∈{1,2,3,4} p(ȳ |v(x̄))

| ȳ | = 1

Constrained Output
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• Generate with constraints:


- Compare the probabilities of all possible outputs according to 
your format





- If the label is a single token ( ), just compare next token 
probabilities over labels


- Otherwise, compute  by force decoding the 
considered output (why? can we avoid this?)


- Can normalize to get a distribution between only valid outputs

arg maxȳ∈{1,2,3,4} p(ȳ |v(x̄))

| ȳ | = 1

p(ȳ |v(x̄))
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• Generate with constraints:


- Compare the probabilities of all possible outputs according to your 
format





- If the label is a single token ( ), just compare next token 
probabilities over labels


- Otherwise, compute  by force decoding the considered output 
(why? can we avoid this?)


- Can normalize to get a distribution between only valid outputs


- When is this hard?

arg maxȳ∈{1,2,3,4} p(ȳ |v(x̄))

| ȳ | = 1

p(ȳ |v(x̄))

Constrained Output
Zero-shot Prompting
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• Prompting simplifies some aspects of adapting LLMs for tasks


- No need to do expensive parameter estimate


- You need much less data: no training data with zero-shot 
prompting


• However: many sources of unexpected variability 


- There are many way to write a prompt for the same task


- Can we expect all of them to simply function the same?

Sensitivity and Variability
Zero-shot Prompting
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• Prompts create a natural 
language input


• So the model ability to 
reason about that language 
influences task 
performance


- How “natural” it is?


- How does it “align” with 
the training data? 

Sensitivity and Variability
Zero-shot Prompting
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Abstract

Language models can be prompted to perform a
wide variety of tasks with zero- and few-shot in-
context learning. However, performance varies
significantly with the choice of prompt, and we
do not yet understand why this happens. In this
paper, we analyze the factors that contribute
to this variance and establish a new empirical
hypothesis: the performance of a prompt is
predicted by the extent to which the model is
familiar with the language it contains. Over a
wide range of tasks, we show that the lower the
perplexity of the prompt, the better it is able
to perform the task, when considering reason-
able prompts that are related to it. As part of
our analysis, we also devise a method to auto-
matically extend a small seed set of manually
written prompts by paraphrasing with GPT3
and backtranslation. This larger set allows us
to verify that perplexity is a strong predictor
of the success of a prompt and we show that
the lowest perplexity prompts are consistently
effective.

1 Introduction

Language models can be prompted to perform
a wide range of zero- and few-shot learning
tasks (Brown et al., 2020; Schick and Schütze,
2020). However, there is significant variance in the
performance of seemingly similar prompts (Chen
et al., 2022): for AG News (Zhang et al., 2015), we
find an over 30 point accuracy gap between differ-
ent manually curated prompts (see Table 1) on OPT
175B (Zhang et al., 2022). Despite efforts to im-
prove prompt engineering (Shin et al., 2020; Li and
Liang, 2021; Gao et al., 2021), it is still challenging
to develop high-quality prompts for new tasks, and
little is known about why this phenomenon occurs.

We are interested in understanding what makes
some prompts better than others, and using this un-
derstanding to create better prompts for given tasks
and models. We hypothesize that the lower the per-
plexity of a prompt is, the better its performance

Figure 1: Accuracy vs. perplexity for the AG News
dataset with OPT 175B. The x axis is in log scale. Each
point stands for a different prompt.

on the task will be, when considering reasonable
prompts that are related to the task. This is based
on the intuition that the more frequently the prompt
(or very similar phrases) appears in the training
data, the more the model is familiar with it and
is able to perform the described task. We refrain
from using the training data directly as it is often
unavailable, expensive to search due to its size, and
hard to use for approximate matching of similar
prompts. Instead, we focus on the perplexity of the
prompt as a proxy for its occurrences in the data.

To enable more complete analysis, we automati-
cally expand the set of manually created prompts
for the task by paraphrasing, resulting in a much
larger and diverse set of prompts. We focus on
prompts in English that reasonably describe the
task for two reasons: (a) our main motivation is to
understand what lies under the variance of perfor-
mance in this type of prompt; (b) we aim to devise
a useful method for creating prompts that are con-
sistently effective, that could be easily adopted and
interpreted by future, potentially non-expert users.

We show empirically that our hypothesis holds
across a diverse set of tasks (including classifi-
cation and word prediction), models, and model
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• Minor changes that 
should have no impact, 
can have dramatic 
effect


• For example: asking 
for answer in 
quotations
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marks for the label (usually aligns with whether
the prompt uses quotation marks for the source
word) – three example prompts appear on the plot.
Prompts with quotation marks for the words tend to
have both lower perplexity and better performance,
consistently. We further analyze the results for
OPT 175B within clusters (with/without quotations
marks). In the cluster with quotation marks, we
get negative correlations (in the range of –0.28 to
–0.38) that are statistically significant for almost all
languages. The correlations within the other cluster
are weaker and less significant (this is expected
given the overall lower performance of that cluster).

Figure 2: Score of correct label vs. perplexity for the
word-level translation task in French with OPT 175B.
The x axis is in log scale. The blue points stand for
prompts with quotation marks for the words, while the
yellow points are of prompts without quotation marks.

6.2 Effect of Noisy Prompts

We expect our automatic method for expand-
ing the set of prompts to also introduce some
noise. Though our focus is on the lower perplexity
prompts, since we want to benefit from this anal-
ysis and be able to devise a method for creating
better prompts, we do want to make sure that this
potential noise is not the cause for the strong cor-
relations we get. In other words, one might claim
that some noisy prompts have particularly high per-
plexity and also perform badly, thus, supporting
our hypothesis in an undesirable and uncontrolled
manner.

We turn to inspect the 10% highest perplex-
ity prompts in the different tasks and find subjec-
tively that they are not noisy, and are usually valid
prompts for the tasks. The 5 highest perplexity
prompts for the GLUE Cola task are listed in Ta-
ble 7 as an example.

prompt ppl

Is this example correct English usage? 25.79
Is this example using English correctly? 25.46
Is this example correct English? 25.33
Is this the example in correct English? 25.00
Is English in this example correct? 24.90

Table 7: Example of the 5 highest perplexity prompts
for GLUE Cola, using OPT 175B.

Task Lang Before filtering After filtering
Pearson Spearman Pearson Spearman

AG News - -0.63 -0.68 -0.62 -0.54

WLT

ita -0.44 -0.58 -0.44 -0.57
spa -0.47 -0.61 -0.47 -0.61
cat -0.45 -0.57 -0.47 -0.58
fra -0.47 -0.57 -0.48 -0.57
deu -0.43 -0.60 -0.44 -0.60
fin -0.41 -0.60 -0.44 -0.62
por -0.43 -0.61 -0.45 -0.62
eus -0.45 -0.60 -0.47 -0.61
tur -0.43 -0.61 -0.44 -0.62

Table 8: Correlations before and after filtering out noisy
prompts, with AG News and Word-Level Translation
(WLT).

As a sanity check, we choose two tasks: word-
level translation and AG News, manually filter out
the noisy prompts, and compute the correlations
again. The annotation is done by external anno-
tators (NLP researchers) that were presented with
the tasks and asked to label whether the prompt is
reasonable to use for the task. The new correlations
with OPT 175B are reported in Table 8. We find
that all correlations remain strong and statistically
significant when noise is manually removed from
the analysis. We get the same trends with Bloom
as well.

6.3 Best Performing Prompts
Table 9 lists the 5 lowest perplexity prompts for the
task of antonym prediction, as an example. Similar
lists for the rest of the tasks are listed in Section B
in the Appendix.

A closer look at the lowest perplexity prompts
reveals that the intersection of 10 lowest perplex-

prompt ppl

The following two words are antonyms: “good” and “ 10.24
The antonym of the word “good” is “ 10.32
The word that has the opposite meaning of the word “good” is “ 10.43
The word “good” is the antithesis of the word “ 10.85
The word “good” is the opposite of the word “ 11.15

Table 9: Lowest perplexity prompts for the antonym
prediction task, using OPT 175B.
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• Across open-weight models (at the 
time), mean best 50% of prompts 
perform much better than all prompts


• Caveat: it is an open question how 
this generalizes to current state-of-
the-art models
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All Manually Created Prompts Examples of Similar Automatically Created Prompts

What label best describes this news article? What’s the most accurate label for this news article?
What is this piece of news regarding? What does this piece of news concern?
Which newspaper section would this article likely appear in? In what section of the newspaper could this article be published?
What topic is this news article about? What category does this article fall into?

Table 4: Prompts for the task AG News (news classification): the manually created prompts and a sample of
automatically created prompts using our method.

Model Task Perplexity-score corr. Perplexity-acc corr. Avg Acc Acc 50%
Pearson Spearman Pearson Spearman

OPT 175B

Antonyms **-0.41 **-0.53 – – – –
GLUE Cola -0.15 -0.14 -0.04 -0.02 47.7 57.1
Newspop *-0.24 **-0.26 *-0.20 -0.18 66.4 72.9
AG News **-0.63 **-0.68 **-0.77 **-0.81 57.5 68.7
IMDB **0.35 **0.40 0.14 *0.20 86.2 91.0
DBpedia **-0.50 **-0.44 **-0.51 **-0.42 46.7 55.2
Emotion -0.14 -0.19 **-0.30 **-0.32 16.4 23.0
Tweet Offensive *-0.19 0.07 0.18 *0.23 51.3 55.8

Bloom 176B

Antonyms **-0.37 **-0.23 – – – –
GLUE Cola 0.07 0.11 **-0.25 **-0.26 55.5 65.6
Newspop **-0.50 **-0.42 **-0.59 **-0.51 78.9 87.8
AG News **-0.62 **-0.54 **-0.44 **-0.44 50.3 59.4
IMDB 0.04 0.09 -0.08 -0.14 89.3 92.2
DBpedia **-0.47 *-0.27 **-0.35 *-0.21 27.2 33.4
Emotion **-0.33 **-0.42 **-0.48 **-0.55 29.3 31.7
Tweet Offensive 0.14 *0.24 *-0.20 -0.03 41.6 46.2

OPT 30B

Antonyms **-0.54 **-0.70 – – – –
GLUE Cola -0.05 0.03 -0.13 0.02 32.2 35.5
Newspop *-0.23 *-0.25 *-0.18 -0.12 60.3 66.6
AG News **-0.66 **-0.71 **-0.81 **-0.80 49.3 60.7
IMDB -0.06 *0.17 0.04 **0.22 81.6 86.1
DBpedia **-0.41 **-0.34 *-0.21 *-0.25 35.9 42.4
Emotion 0.00 -0.03 0.18 0.13 12.3 16.2
Tweet Offensive **-0.44 **-0.39 -0.11 -0.05 54.6 60.2

OPT 1.3B

Antonyms **-0.45 **-0.53 – – – –
GLUE Cola **-0.39 **-0.36 -0.09 *-0.19 60.3 65.9
Newspop **0.33 *0.21 -0.07 -0.07 37.6 40.3
AG News **-0.33 **-0.29 **-0.56 **-0.49 31.9 37.6
IMDB -0.11 -0.07 **0.24 **0.22 86.0 89.1
DBpedia -0.16 -0.14 -0.02 -0.01 8.7 9.2
Emotion 0.08 0.08 **-0.29 **-0.30 7.0 9.1
Tweet Offensive **-0.42 **-0.35 **-0.50 **-0.38 58.6 62.6

Table 5: Correlation results for the different tasks, with OPT (different sizes) and Bloom. Correlations with p < 0.05
are marked with *. Correlations with p < 0.00625 (according to Bonferroni correction for multiple hypotheses) are
marked with **. Dark and light blue colored cells stand for negative correlations < �0.2 and > �0.2, respectively.
Dark and light orange colored cells stand for positive correlations > 0.2 and < 0.2, respectively. Average accuracy
across all prompts and average accuracy of best 50% prompts are also reported for reference (Avg Acc and Acc
50%, respectively).

scores.

For the word prediction tasks we only report
scores, since accuracy in general is less stable, suf-
fers more from the surface form competition (Holtz-
man et al., 2021), and is usually quite low for these

tasks in our setting (the chances the model will gen-
erate an exact match of the label are low). Hence,
the score of the correct label gives a better estimate
of the actual performance of the model.
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• Prompts can even be sensitive to minor cosmetic changes


• Can influence performance in unexpected ways


• Can think of them as (very complex) hyper-parameters
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0 1

Task Accuracy

Performance Spread Among Plausible Formats

Passage: <text>  
Answer: <text>

Original formatting

Modified separator and spacing

Passage <text> Answer <text>

Modified spacing between fields

Passage: <text> Answer: <text>

Modified casing

PASSAGE: <text>  
ANSWER: <text>

PASSAGE <text>  
 ANSWER <text>

Modified separator

Passage:<text>  
Answer:<text>

0.036 0.804

Figure 1: Slight modifications in prompt format templating may lead to significantly different model
performance for a given task. Each <text> represents a different variable-length placeholder to
be replaced with actual data samples. Example shown corresponds to 1-shot LLaMA-2-7B perfor-
mances for task280 from SuperNaturalInstructions (Wang et al., 2022). This StereoSet-inspired task
(Nadeem et al., 2021) requires the model to, given a short passage, classify it into one of four types
of stereotype or anti-stereotype (gender, profession, race, and religion).

data points or models. However, some anecdotal evidence points to formatting choices actually hav-
ing a significant influence on model behavior (Aghajanyan, 2023). In some cases, researchers report
a limited number of manually generated formats to show that scaling trends hold despite perfor-
mance being significantly different (Schick et al., 2021). The assumption that formatting does not
influence overall model performance may become problematic when improvements over existing
approaches are attributed to the amount and source of training data, number of parameters, or model
architecture, without also accounting for changes in prompt format. Ignoring variance across for-
mats may also negatively affect user experience, e.g. if users inadvertently choose formats the LLM
does not perform well on.

Our proposed tool, FORMATSPREAD, enables a systematic analysis of these variances across a wide
set of semantically equivalent prompt formats within a user-specified computational budget. We find
that choices in formatting few-shot examples during in-context learning introduce spurious biases
that may lead to significantly different conclusions in model performance. The sensitivity to format-
ting choices that we discover across widely-used, open-source models suggests that future research
would benefit from reporting a performance spread over a sufficient sample of plausible formats,
instead of simply reporting the formatting used and its performance, as is currently standard. More-
over, we argue that this reporting is crucial when comparing the performance of different models, as
we show the influence of formatting choices only weakly correlates between models, thus making
and fixing a formatting choice could introduce a significant confounding factor.

Fully exploring the space of prompt formats is intractable, as computation costs scale linearly with
the number of formats considered. FORMATSPREAD efficiently explores the space of prompt for-
mats under a user-specified computational budget using Bayesian optimization. FORMATSPREAD
does not require access to the model weights, allowing its use on API-gated models: we find a spread
up to 56 accuracy points with a median spread of 6.4 accuracy points with GPT3.5 across 320 for-
mats and 53 tasks at a cost of under 10USD on average per task. Beyond facilitating evaluation, we
also propose a suite of analyses to further characterize model sensitivity to formatting. Among other
results, we show that the separability of continuous prompt embeddings correlates with the spread
observed in task performance.

2 OVERVIEW

We evaluate LLM performance over the space of prompt formats that may plausibly be chosen by
a non-adversarial user when designing a prompt for a target task, where the space of formats is
defined by a grammar (§3.1). Our grammar’s definition naturally induces a definition of semantic
equivalence among formats. We quantify model sensitivity in terms of performance range in a target
task across the space of equivalent prompt formats to the original choice (§4.2). We cast the prob-
lem of searching across this space as a bandit problem, and propose FORMATSPREAD (§3), which
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Figure 5: Example of accuracy variance for dif-
ferent choices of constants in S1 for task1283.

Table 1: Tasks where at least two constants yield
different performance (weakly different if their
boxes in a boxplot do not overlap, strongly if
boxes including whiskers do not overlap).

Median Spread
(range [0, 1])

Weak
Diff.

Strong
Diff.

C 0.144 29% 1%
S1 0.132 43% 22%
S2 0.238 0% 0%

Fitem1 0.176 0% 0%
Fitem2 0.173 45% 10%
Fcasing 0.188 3% 0%

Table 2: Examples of atomic changes’ impact on accuracy using probability ranking (prefix match-
ing shown in Appendix 5). {} represents a text field; p2 yields higher accuracy than p1 for all tasks.

Task Id Prompt Format 1 (p1) Prompt Format 2 (p2) Acc p1 Acc p2 Diff.

task280 passage:{}\n answer:{} passage {}\n answer {} 0.043 0.826 0.783
task317 Passage::{} Answer::{} Passage:: {} Answer:: {} 0.076 0.638 0.562
task190 Sentence[I]- {}Sentence[II]- {}

-- Answer\t{}
Sentence[A]- {}Sentence[B]- {}
-- Answer\t{}

0.360 0.614 0.254

task904 input:: {} \n output:: {} input::{} \n output::{} 0.418 0.616 0.198
task320 target - {} \n{} \nanswer - {} target - {}; \n{}; \nanswer - {} 0.361 0.476 0.115
task322 COMMENT: {} ANSWER: {} comment: {} answer: {} 0.614 0.714 0.100
task279 Passage : {}. Answer : {} PASSAGE : {}. ANSWER : {} 0.372 0.441 0.069

Small prompt variations often yield large performance differences. Table 2 shows a selection of
tasks where changing a single constant on a format (e.g., casing in task322) results in large accuracy
differences. Figure 6 shows that regardless of the scoring criterion used, a significant ratio of these
atomic changes are associated with large accuracy changes. For example, 24% of atomic changes
have an associated accuracy change of at least 5 points when using exact prefix matching as scoring
criteria (11% when using probability ranking).

The space of prompt format accuracy is highly non-monotonic, which makes local search algorithms
over the space less effective. Let (p1, p2, p3) be a prompt format triple such that pi+1 is obtained
by making an atomic change to pi. We argue that if the prompt format space is smooth, we should
often see a triples’ accuracy to be strictly monotonic over i. We choose 24 tasks (13 multiple choice,
11 non-multiple choice), sample 300 (p1, p2, p3) triples for each, and the compute accuracy (using
exact prefix matching) of each pi on 250 samples. 32.4 and 33.6% of triples were monotonic for
multiple-choice and non-multiple-choice tasks respectively. Given that random shuffling within a
triple will result in monotonicity 33.3% of the time, this suggests that local search mechanisms like
simulated annealing may not be effective as they require a locally smooth search space.

4.4 PROMPT FORMATS ARE IDENTIFIABLE TRANSFORMATIONS OF PROMPT EMBEDDINGS

Prompt format choices represent a deterministic transformation of the input, even if its impact on the
resulting performance is hard to predict. We represent prompt embeddings as the last hidden layer
obtained when processing the whole input prompt (immediately before selecting the first token to
generate). We demonstrate that format choice yields a highly identifiable transformation over this
embedding, which suggests that formats can be seen as transformations of the output probability
distribution.

For each task, and for both {1, 5}-shot settings, we collect prompt embeddings from LLaMA-2-7B
corresponding to 10 randomly sampled valid formats for 1000 evaluation examples. We train an
XGBoost (Chen & Guestrin, 2016) classifier that maps from the top n principal components of a
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Abstract

Large language models have shown promis-
ing results in zero-shot settings (Brown et al.,
2020; Radford et al., 2019). For example, they
can perform multiple choice tasks simply by
conditioning on a question and selecting the
answer with the highest probability.

However, ranking by string probability can
be problematic due to surface form compe-
tition—wherein different surface forms com-
pete for probability mass, even if they repre-
sent the same underlying concept in a given
context, e.g. “computer” and “PC.” Since
probability mass is finite, this lowers the prob-
ability of the correct answer, due to competi-
tion from other strings that are valid answers
(but not one of the multiple choice options).

We introduce Domain Conditional Pointwise
Mutual Information, an alternative scoring
function that directly compensates for sur-
face form competition by simply reweighing
each option according to its a priori likeli-
hood within the context of a specific task. It
achieves consistent gains in zero-shot perfor-
mance over both calibrated (Zhao et al., 2021)
and uncalibrated scoring functions on all GPT-
2 and GPT-3 models on a variety of multiple
choice datasets.1

1 Introduction

Despite the impressive results large pretrained lan-
guage models have achieved in zero-shot settings
(Brown et al., 2020; Radford et al., 2019), we
argue that current work underestimates the zero-
shot capabilities of these models on classification
tasks. This is in large part due to surface form
competition—a property of generative models that
causes probability to be rationed between different
valid strings, even ones that differ trivially, e.g.,
by capitalization alone. Such competition can be

=Authors contributed equally
1Code is available at https://github.com/

peterwestuw/surface-form-competition

Figure 1: While humans select from given options, lan-
guage models implicitly assign probability to every pos-
sible string. This creates surface form competition be-
tween different strings that represent the same concept.
Example from CommonsenseQA (Talmor et al., 2019).

largely removed by scoring choices according to
Domain Conditional Pointwise Mutual Informa-
tion (PMIDC), which reweighs scores by how much
more likely a hypothesis (answer) becomes given a
premise (question) within the specific task domain.

Specifically, consider the example question
(shown in Figure 1): “A human wants to sub-
merge himself in water, what should he use?” with
multiple choice options “Coffee cup”, “Whirlpool
bath”, “Cup”, and “Puddle.” From the given op-
tions, “Whirlpool bath” is the only one that makes
sense. Yet, other answers are valid and easier for a
language model to generate, e.g., “Bathtub” and “A
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• Just like hyper-parameters, can think of optimizing prompts
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• Most do not lead to dramatically better results compared to 
manual engineering/hill-climbing (and are computationally 
intensive)


• Most important: the choice of prompt is very important for zero-
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the movie’s acting could’ve 
been better, but the visuals and 
directing were top-notch.

x̄ =

Review: The cinematography was stellar; great movie! 
Sentiment (positive or negative): positive 
Review: The plot was boring and the visuals were 
subpar. 
Sentiment (positive or negative): negative 
Review: The movie’s acting could’ve been better, but 
the visuals and directing were top-notch. 
Sentiment (positive or negative):

LLM

positive ȳ
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[Figure from Brown et al. 2020]Figure 2.1: Zero-shot, one-shot and few-shot, contrasted with traditional fine-tuning. The panels above show

four methods for performing a task with a language model – fine-tuning is the traditional method, whereas zero-, one-,
and few-shot, which we study in this work, require the model to perform the task with only forward passes at test
time. We typically present the model with a few dozen examples in the few shot setting. Exact phrasings for all task
descriptions, examples and prompts can be found in Appendix G.

• Zero-Shot (0S) is the same as one-shot except that no demonstrations are allowed, and the model is only given
a natural language instruction describing the task. This method provides maximum convenience, potential for
robustness, and avoidance of spurious correlations (unless they occur very broadly across the large corpus of
pre-training data), but is also the most challenging setting. In some cases it may even be difficult for humans
to understand the format of the task without prior examples, so this setting is in some cases “unfairly hard”.
For example, if someone is asked to “make a table of world records for the 200m dash”, this request can be
ambiguous, as it may not be clear exactly what format the table should have or what should be included (and
even with careful clarification, understanding precisely what is desired can be difficult). Nevertheless, for at
least some settings zero-shot is closest to how humans perform tasks – for example, in the translation example
in Figure 2.1, a human would likely know what to do from just the text instruction.

Figure 2.1 shows the four methods using the example of translating English to French. In this paper we focus on
zero-shot, one-shot and few-shot, with the aim of comparing them not as competing alternatives, but as different
problem settings which offer a varying trade-off between performance on specific benchmarks and sample efficiency.
We especially highlight the few-shot results as many of them are only slightly behind state-of-the-art fine-tuned models.
Ultimately, however, one-shot, or even sometimes zero-shot, seem like the fairest comparisons to human performance,
and are important targets for future work.

Sections 2.1-2.3 below give details on our models, training data, and training process respectively. Section 2.4 discusses
the details of how we do few-shot, one-shot, and zero-shot evaluations.
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Figure 1.3: Aggregate performance for all 42 accuracy-denominated benchmarks While zero-shot performance
improves steadily with model size, few-shot performance increases more rapidly, demonstrating that larger models are
more proficient at in-context learning. See Figure 3.8 for a more detailed analysis on SuperGLUE, a standard NLP
benchmark suite.

In this paper, we test this hypothesis by training a 175 billion parameter autoregressive language model, which we call
GPT-3, and measuring its in-context learning abilities. Specifically, we evaluate GPT-3 on over two dozen NLP datasets,
as well as several novel tasks designed to test rapid adaptation to tasks unlikely to be directly contained in the training
set. For each task, we evaluate GPT-3 under 3 conditions: (a) “few-shot learning”, or in-context learning where we
allow as many demonstrations as will fit into the model’s context window (typically 10 to 100), (b) “one-shot learning”,
where we allow only one demonstration, and (c) “zero-shot” learning, where no demonstrations are allowed and only
an instruction in natural language is given to the model. GPT-3 could also in principle be evaluated in the traditional
fine-tuning setting, but we leave this to future work.

Figure 1.2 illustrates the conditions we study, and shows few-shot learning of a simple task requiring the model to
remove extraneous symbols from a word. Model performance improves with the addition of a natural language task
description, and with the number of examples in the model’s context, K. Few-shot learning also improves dramatically
with model size. Though the results in this case are particularly striking, the general trends with both model size and
number of examples in-context hold for most tasks we study. We emphasize that these “learning” curves involve no
gradient updates or fine-tuning, just increasing numbers of demonstrations given as conditioning.

Broadly, on NLP tasks GPT-3 achieves promising results in the zero-shot and one-shot settings, and in the the few-shot
setting is sometimes competitive with or even occasionally surpasses state-of-the-art (despite state-of-the-art being held
by fine-tuned models). For example, GPT-3 achieves 81.5 F1 on CoQA in the zero-shot setting, 84.0 F1 on CoQA in
the one-shot setting, 85.0 F1 in the few-shot setting. Similarly, GPT-3 achieves 64.3% accuracy on TriviaQA in the
zero-shot setting, 68.0% in the one-shot setting, and 71.2% in the few-shot setting, the last of which is state-of-the-art
relative to fine-tuned models operating in the same closed-book setting.

GPT-3 also displays one-shot and few-shot proficiency at tasks designed to test rapid adaption or on-the-fly reasoning,
which include unscrambling words, performing arithmetic, and using novel words in a sentence after seeing them
defined only once. We also show that in the few-shot setting, GPT-3 can generate synthetic news articles which human
evaluators have difficulty distinguishing from human-generated articles.

At the same time, we also find some tasks on which few-shot performance struggles, even at the scale of GPT-3. This
includes natural language inference tasks like the ANLI dataset, and some reading comprehension datasets like RACE
or QuAC. By presenting a broad characterization of GPT-3’s strengths and weaknesses, including these limitations, we
hope to stimulate study of few-shot learning in language models and draw attention to where progress is most needed.

A heuristic sense of the overall results can be seen in Figure 1.3, which aggregates the various tasks (though it should
not be seen as a rigorous or meaningful benchmark in itself).

5

https://arxiv.org/abs/2005.14165


• Providing ICL examples almost always leads to significant 
improvements


• Benefits tend to diminish with more examples

Performance
In-context Learning (ICL)

22
[Liang et al. 2022]

Published in Transactions on Machine Learning Research (08/2023)

Figure 32: Number of in-context examples. For each model, we set the maximum number of in-context
examples to [0, 1, 2, 4, 8, 16] and fit as many in-context examples as possible within the context window.
We plot performance as a function of the average number of in-context examples actually used.

Number of in-context examples. By default, we either use 5 in-context examples, or fewer examples
for scenarios where 5 examples do not fit within in the context window. To test how the number of examples
(i.e. the sample e�ciency of adaptation) influences performance, we vary the maximum number of examples
across n œ {0, 1, 2, 4, 8, 16}. In Figure 32, we plot model performance as a fraction of the average number
of in-context examples provided (which may be fewer than the maximum stated above if they do not fit
inside the context window). To explore the results further, including the model generations, see https:
//crfm.stanford.edu/helm/v0.1.0/?group=ablation_in_context.

We find that all models show clear improvement from n = 0 to n = 1, sometimes having 0% accuracy in the
zero-shot setting, with the consistent exception of CNN/DailyMail where zero-shot accuracy is better for
almost all models. We posit that models may not e�ectively understand the appropriate length distribution
and the poor reference summaries may comparatively mislead the model in the one-shot setting compared to
the zero-shot setting. However, for larger numbers of in-context examples, we do not see consistent benefits
across all models and all scenarios. The sole exception is OPT (175B) which, besides CNN/DailyMail,
shows a perfectly monotonically increasing relationship between number of shots and model accuracy for
NaturalQuestions (open-book), IMDB, and CivilComments.

Formatting of prompt. As we describe in §7: prompting, beyond the in-context examples and the
evaluation instance, there are several other details required to fully specify a prompt (e.g. instructions that
describe what the model should do). Since this formatting exists in the space of natural language, it is
di�cult to specify concrete axes to systematically vary across (i.e. in contrast to how we can specify a range
we consider for the number of in-context examples). Consequently, we consider the following motivated but
fairly ad hoc/arbitrary changes to the prompt format involving instructions, input prefixes, output prefixes,
and input su�xes. The exact changes to the prompt can be found at https://crfm.stanford.edu/helm/
v0.1.0/?group=ablation_prompts, along with the results.

The clear finding is that the best prompt formatting is not consistent across models (i.e. models can
stand to improve in their interoperability). In particular, one variants lead to an accuracy of 67.3% for
Anthropic-LM v4-s3 (52B) on NaturalQuestions (open-book), whereas the prompt performs very poorly
for BLOOM (176B), which drops from an accuracy around 60% to 8.5%. In some cases, we believe the
prompting changes may lead to poor/undesirable interactions with the tokenizer, given the models use
di�erent tokenizers in several cases. For GLM (130B), we are intrigued to see the prompt involving mentioning
the model is an expert AI assistant performs best across all four scenarios (NaturalQuestions (open-book),
CNN/DailyMail, IMDB, and CivilComments) we look in terms of accuracy. Specifically, the prompt
includes instructions of “I am an expert AI assistant who is here to help you with the following.”, along
with an input_prefix of “Passage: ”, input_suffix of “ "”, and an output_prefix of “Answer:”
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Figure 3.8: Performance on SuperGLUE increases with model size and number of examples in context. A value
of K = 32 means that our model was shown 32 examples per task, for 256 examples total divided across the 8 tasks in
SuperGLUE. We report GPT-3 values on the dev set, so our numbers are not directly comparable to the dotted reference
lines (our test set results are in Table 3.8). The BERT-Large reference model was fine-tuned on the SuperGLUE training
set (125K examples), whereas BERT++ was first fine-tuned on MultiNLI (392K examples) and SWAG (113K examples)
before further fine-tuning on the SuperGLUE training set (for a total of 630K fine-tuning examples). We find the
difference in performance between the BERT-Large and BERT++ to be roughly equivalent to the difference between
GPT-3 with one example per context versus eight examples per context.

and MultiRC, we sampled a new set of examples to use in the context for each problem. For WSC and MultiRC, we
used the same set of randomly drawn examples from the training set as context for all of the problems we evaluated.

We observe a wide range in GPT-3’s performance across tasks. On COPA and ReCoRD GPT-3 achieves near-SOTA
performance in the one-shot and few-shot settings, with COPA falling only a couple points short and achieving
second place on the leaderboard, where first place is held by a fine-tuned 11 billion parameter model (T5). On WSC,
performance is still relatively strong, achieving 80.1% in the few-shot setting (note that GPT-3 achieves 88.6% on the
original Winograd dataset as described in Section 3.4). On BoolQ, MultiRC, and RTE, performance is reasonable,
roughly matching that of a fine-tuned BERT-Large. On CB, we see signs of life at 75.6% in the few-shot setting.

WiC is a notable weak spot with few-shot performance at 49.4% (at random chance). We tried a number of different
phrasings and formulations for WiC (which involves determining if a word is being used with the same meaning in two
sentences), none of which was able to achieve strong performance. This hints at a phenomenon that will become clearer
in the next section (which discusses the ANLI benchmark) – GPT-3 appears to be weak in the few-shot or one-shot
setting at some tasks that involve comparing two sentences or snippets, for example whether a word is used the same
way in two sentences (WiC), whether one sentence is a paraphrase of another, or whether one sentence implies another.
This could also explain the comparatively low scores for RTE and CB, which also follow this format. Despite these
weaknesses, GPT-3 still outperforms a fine-tuned BERT-large on four of eight tasks and on two tasks GPT-3 is close to
the state-of-the-art held by a fine-tuned 11 billion parameter model.

Finally, we note that the few-shot SuperGLUE score steadily improves with both model size and with number of
examples in the context showing increasing benefits from in-context learning (Figure 3.8). We scale K up to 32
examples per task, after which point additional examples will not reliably fit into our context. When sweeping over
values of K, we find that GPT-3 requires less than eight total examples per task to outperform a fine-tuned BERT-Large
on overall SuperGLUE score.

3.8 NLI

Natural Language Inference (NLI) [Fyo00] concerns the ability to understand the relationship between two sentences.
In practice, this task is usually structured as a two or three class classification problem where the model classifies
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Calibrate Before Use: Improving Few-Shot Performance of Language Models

Figure 2. There is high variance in GPT-3’s accuracy as we change
the prompt’s training examples, as well as the permutation of the
examples. Here, we select ten different sets of four SST-2 training
examples. For each set of examples, we vary their permutation and
plot GPT-3 2.7B’s accuracy for each permutation (and its quartiles).

Figure 3. There is high variance in GPT-3’s accuracy as we change
the prompt format. In this figure, we use ten different prompt
formats for SST-2. For each format, we plot GPT-3 2.7B’s accuracy
for different sets of four training examples, along with the quartiles.

using the 4-way AGNews (Zhang et al., 2015) and 14-way
DBPedia (Zhang et al., 2015) datasets. The prompt in Sec-
tion 1 shows an example of the sentiment analysis task.

Fact Retrieval We evaluate fact retrieval with LAMA

(Petroni et al., 2019). The dataset consists of knowledge
base triples that are placed into templates with missing ob-
jects, e.g. “Obama was born in”. We use these templates
as our prompts, and remove the relations where the missing
answer is not at the end of the template (left-to-right LMs
cannot solve these). The answers are always single tokens,
and we report average accuracy across all triples.

Information Extraction We consider information extrac-
tion using two slot filling datasets, ATIS (Hemphill et al.,
1990) and MIT Movies trivia10k13 (Liu et al., 2012). We
use two random slots for each dataset, airline and departure
date for ATIS, and director name and movie genre for MIT
Movies. The answer for both datasets is a span of text from
the input, e.g., the ATIS airline task is to predict “american
airlines” when given the sentence “list a flight on american
airlines from toronto to san diego”. We use Exact Match
between the model’s generated output and the ground-truth
span as our evaluation metric.

2.2. Model Details

We run our experiments on three sizes of GPT-3 (2.7B, 13B,
and 175B parameters) as well as GPT-2 (1.5B parameters).
We access GPT-3 using the OpenAI API. We release code
to replicate our experiments.1

1https://www.github.com/tonyzhaozh/few-shot-learning

3. Accuracy Varies Highly Across Prompts

This section studies how GPT-3’s accuracy changes as we
vary each aspect of the prompt (training examples, permu-
tation, format). We focus on a subset of the datasets to
simplify our analysis; in Section 5 we show that our find-
ings hold across all of the datasets we study.

GPT-3’s accuracy depends highly on both selection and

permutation of training examples. Concretely, we use a
fixed prompt format and choose different random sets of
training examples. For each set of training examples, we
evaluate the accuracy for all possible permutations.

Figure 2 shows the results for SST-2 (4-shot, GPT-3 2.7B).
Surprisingly, varying the permutation can be as important,
or even more important, than which training examples are
chosen. For example, varying the permutation of the train-
ing examples can cause accuracy to go from near chance
(54.3%) to near state-of-the-art (93.4%). For a qualitative
example of the sensitivity to permutations, see Table 2 in
Appendix A. This high importance on example order is in
contrast to standard machine learning, where the ordering
of examples during training is typically an afterthought.

The variance persists with more data and larger models.

Adding more training examples into the prompt does not
necessarily reduce the variance in accuracy. We sweep over
the number of training examples for three different datasets
in Figure 1 (red curves). The variance remains high even
when we use 16 training examples. Moreover, adding more
training examples can sometimes hurt accuracy (e.g., mean
accuracy drops from 36.0% to 25.9% for DBPedia 0-shot
to 1-shot). The variance in accuracy can also remain high
when using larger models, e.g., the left of Figure 1.

https://arxiv.org/abs/2102.09690
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Figure 4. Majority label and recency biases cause GPT-3 to become biased towards certain answers and help to explain the high variance
across different examples and orderings. Above, we use 4-shot SST-2 with prompts that have different class balances and permutations,
e.g., [P P N N] indicates two positive training examples and then two negative. We plot how often GPT-3 2.7B predicts Positive on the
balanced validation set. When the prompt is unbalanced, the predictions are unbalanced (majority label bias). In addition, balanced
prompts that have one class repeated near the end, e.g., end with two Negative examples, will have a bias towards that class (recency bias).

GPT-3’s accuracy depends highly on prompt format.

We next keep the set of training examples and permutations
fixed but vary the prompt format. We focus on SST-2, and
we manually design an additional 14 prompt formats. The
formats include question-answer templates, conversation-
style templates, prompts that resemble Web pages, and vari-
ations on the label names (all formats available in Table 7 in
Appendix B). The accuracy for ten of the formats is shown
in Figure 3. We find that some of the formats are better than
others on average. However, all of the formats still suffer
from high variance across different training sets.

4. What Causes the High Variance?

We next analyze why GPT-3’s accuracy varies across differ-
ent training examples, permutations, and prompt formats.
Concretely, we show that the variance arises because LMs
are biased towards outputting answers that are (1) frequent
in the prompt (majority label bias), (2) towards the end of the
prompt (recency bias), and (3) common in the pre-training
data (common token bias).

Majority Label Bias We find that GPT-3 is biased towards
answers that are frequent in the prompt. A trivial case is
when a text classification prompt has a class imbalance, e.g.,
more Positive than Negative sentiment examples. This is
demonstrated in the “unbalanced” region of Figure 4: when
one class is more common, GPT-3 2.7B is heavily biased
towards predicting that class. Since the SST-2 sentiment
analysis dataset is balanced, this bias causes large accuracy
degradations. The majority label bias also explains why we
frequently observe a drop in accuracy when moving from
0-shot to 1-shot—we found that the drop is due to the model
frequently repeating the class of the one training example.

The majority label bias also occurs for generation tasks. On
the validation set for 4-shot LAMA with GPT-3 2.7B, 50.2%
of the model predictions are a repeat of one of the four train-

ing answers (the correct repeat rate is 24.7%). Overall, the
majority label bias helps to explain why different choices for
the training examples heavily influence GPT-3’s accuracy—
it shifts the distribution of model predictions.

Recency Bias The model’s majority label bias is aggravated
by its recency bias: the tendency to repeat answers that ap-
pear towards the end of the prompt. The “balanced” region
of Figure 4 demonstrates this. For instance, when two Neg-
ative examples appear at the end (P P N N), the model will
heavily prefer the Negative class. Moreover, the recency
bias can outweigh the majority label bias, e.g., the “P P P
N” training set leads to nearly 90% of predictions being
Negative, despite 3

4 of the training examples being Positive.

Recency bias also affects generation tasks. For 4-shot
LAMA, the training answers that are closer to the end of the
prompt are more likely to be repeated by the model. Con-
cretely, the model “overpredicts” the answer from the 1st,
2nd, 3rd, and 4th training example by 8.5%, 8.3%, 14.3%,
and 16.1%, respectively.2 Overall, recency bias helps to
explain why the permutation of the training examples is
important—the ordering of the examples heavily influences
the distribution of the model predictions.

Common Token Bias Finally, we find that GPT-3 is bi-
ased towards outputting tokens that are common in its pre-
training distribution, which is likely suboptimal for the dis-
tribution of answers on the downstream task. A simple case
of this occurs for the LAMA fact retrieval dataset, where
the model often predicts common entities such as “America”
when the ground-truth answer is instead a rare entity.

A more nuanced case of the common token bias occurs for
2Over all relations, as well as three different sets of training

examples, the model repeats the training example at a rate of
20.7%, 19.8%, 29.9%, and 26.8%. The ground-truth repeat rate is
12.2%, 11.5%, 15.6%, and 10.7%. We define “overpredicts” as the
model’s repeat rate minus the ground-truth repeat rate.
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Figure 1. Few-shot learning can be highly unstable across different choices of the prompt. Above, we plot the mean accuracy (± one
standard deviation) across different choices of the training examples for three different datasets and model sizes. We show that our method,
contextual calibration, improves accuracy, reduces variance, and overall makes tools like GPT-3 more effective for end users.

teract these biases by “calibrating” the output distribution.
Concretely, we estimate the model’s bias towards certain an-
swers by feeding in a dummy test input that is content-free.
In the prompt above for example, if we replace “Amazing.”
with the string “N/A”, the model predicts 62% Positive. We
then fit the calibration parameters so that the content-free
input has uniform scores for each answer. This contextual
calibration procedure provides a good setting of the calibra-
tion parameters without additional training data.

We test the effectiveness of contextual calibration on a range
of tasks (Section 5). Contextual calibration consistently
improves GPT-3 and GPT-2’s accuracy (up to 30.0% ab-
solute) across different choices of the prompt format and
examples (e.g., Figure 1). It also makes the accuracy more
stable across different prompts, thus mitigating the need
for prompt engineering. Overall, contextual calibration is a
simple method that makes language models better few-shot
learners: it enables end users to obtain higher accuracy with
considerably less effort.

2. Background and Experimental Setup

Neural autoregressive language models (LMs) take as input
a sequence of tokens and output a probability distribution
over the next token. Large neural LMs can perform tasks in a
zero- or few-shot manner using in-context learning (Radford
et al., 2019; Brown et al., 2020). To do so, a natural language
prompt is fed into the model. This prompt contains three
components: a format, a set of training examples, and a
permutation (ordering) of the training examples.

Prompt Format The prompt format is a template which
consists of placeholders for the training and test example(s)
and possibly a natural language description of the task. For
example, the format of the prompt in Section 1 is a template
with the style: “Input:” input “Sentiment:” label. Many

alternate formats exist, e.g., one could frame the task as
question answering.

Prompt Training Examples The prompt’s training exam-
ples are used to teach the LM how to solve the task at
hand. The prompt from Section 1 consists of two training
examples; we refer to this as “two-shot” learning. We also
consider “zero-shot” learning, where no training examples
are present.

Training Example Permutation When training examples
are used, they have a particular permutation, e.g., the “Sub-
par acting” example comes first in the prompt from Sec-
tion 1. The permutation matters because neural language
models update their hidden states in a left-to-right-fashion.

To make predictions on an input, we slot it into the test
placeholder and generate from the LM. For example, see the
“Amazing.” test example in the prompt from Section 1. For
generation tasks, we generate greedily from the LM until
it produces a newline character. For classification tasks,
the probability for each class is given by the probability
assigned to its associated label name, e.g., the words “Nega-
tive” and “Positive” for sentiment classification.

2.1. Datasets and Prompt Formats

We use datasets for three tasks: text classification, fact
retrieval, and information extraction. We use a fixed prompt
format for each dataset unless otherwise specified. We show
the format and examples from each dataset in Appendix B.

Text Classification We study text classification using six
datasets: sentiment analysis using SST-2 (Socher et al.,
2013), 6-way question classification using TREC (Voorhees
& Tice, 2000), textual entailment using 3-way CB (de Marn-
effe et al., 2019) and binary RTE (Dagan et al., 2005) from
SuperGLUE (Wang et al., 2019), and topic classification

https://github.com/allenai/acl2022-zerofewshot-tutorial/
https://arxiv.org/abs/2102.09690
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Abstract
Large language models (LMs) are able to in-
context learn—perform a new task via infer-
ence alone by conditioning on a few input-
label pairs (demonstrations) and making pre-
dictions for new inputs. However, there has
been little understanding of how the model
learns and which aspects of the demonstra-
tions contribute to end task performance. In
this paper, we show that ground truth demon-
strations are in fact not required—randomly
replacing labels in the demonstrations barely
hurts performance on a range of classification
and multi-choce tasks, consistently over 12 dif-
ferent models including GPT-3. Instead, we
find that other aspects of the demonstrations
are the key drivers of end task performance, in-
cluding the fact that they provide a few exam-
ples of (1) the label space, (2) the distribution
of the input text, and (3) the overall format of
the sequence. Together, our analysis provides
a new way of understanding how and why
in-context learning works, while opening up
new questions about how much can be learned
from large language models through inference
alone.

1 Introduction
Large language models (LMs) have shown impres-
sive performance on downstream tasks by simply
conditioning on a few input-label pairs (demonstra-
tions); this type of inference has been referred to as
in-context learning (Brown et al., 2020). Despite in-
context learning consistently outperforming zero-
shot inference on a wide range of tasks (Zhao et al.,
2021; Liu et al., 2021), there is little understanding
of how it works and which aspects of the demon-
strations contribute to end task performance.

In this paper, we show that ground truth demon-
strations are in fact not required for effective in-
context learning (Section 4). Specifically, replac-
ing the labels in demonstrations with random labels
barely hurts performance in a range of classifica-
tion and multi-choice tasks (Figure 1). The result

Figure 1: Results in classification (top) and multi-
choice tasks (bottom), using three LMs with varying
size. Reported on six datasets on which GPT-3 is eval-
uated; the channel method is used. See Section 4 for
the full results. In-context learning performance drops
only marginally when labels in the demonstrations are
replaced by random labels.

is consistent over 12 different models including the
GPT-3 family (Radford et al., 2019; Min et al.,
2021b; Wang and Komatsuzaki, 2021; Artetxe
et al., 2021; Brown et al., 2020). This strongly
suggests, counter-intuitively, that the model does
not rely on the input-label mapping in the demon-
strations to perform the task.

Further analysis investigates which parts of
demonstrations actually do contribute to the perfor-
mance. We identify possible aspects of demonstra-
tions (e.g., the label space and the distribution of
the input text) and evaluate a series of variants of
the demonstrations to quantify the impact of each
(Section 5). We find that: (1) the label space and
the distribution of the input text specified by the
demonstrations are both key to in-context learn-
ing (regardless of whether the labels are correct
for individual inputs); (2) specifying the overall
format is also crucial, e.g., when the label space
is unknown, using random English words as la-
bels is significantly better than using no labels; and
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• Some tasks require multiple reasoning steps


• Directly generating the answer requires the model internally do 
the reasoning steps (or shortcut somehow)


• It is empirically useful to:


- Show the model examples of the reasoning steps through ICL


- And then have it explicitly generate the reasoning steps 
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Abstract

We explore how generating a chain of thought—a series of intermediate reasoning
steps—significantly improves the ability of large language models to perform
complex reasoning. In particular, we show how such reasoning abilities emerge
naturally in sufficiently large language models via a simple method called chain-of-
thought prompting, where a few chain of thought demonstrations are provided as
exemplars in prompting.
Experiments on three large language models show that chain-of-thought prompting
improves performance on a range of arithmetic, commonsense, and symbolic
reasoning tasks. The empirical gains can be striking. For instance, prompting a
PaLM 540B with just eight chain-of-thought exemplars achieves state-of-the-art
accuracy on the GSM8K benchmark of math word problems, surpassing even
finetuned GPT-3 with a verifier.

A: The cafeteria had 23 apples originally. They used 
20 to make lunch. So they had 23 - 20 = 3. They 
bought 6 more apples, so they have 3 + 6 = 9. The 
answer is 9.

Chain-of-Thought Prompting

Q: Roger has 5 tennis balls. He buys 2 more cans of 
tennis balls. Each can has 3 tennis balls. How many 
tennis balls does he have now? 

A: The answer is 11. 

Q: The cafeteria had 23 apples. If they used 20 to 
make lunch and bought 6 more, how many apples 
do they have?

A: The answer is 27.

Standard Prompting

Q: Roger has 5 tennis balls. He buys 2 more cans of 
tennis balls. Each can has 3 tennis balls. How many 
tennis balls does he have now? 

A: Roger started with 5 balls. 2 cans of 3 tennis balls 
each is 6 tennis balls. 5 + 6 = 11. The answer is 11. 

Q: The cafeteria had 23 apples. If they used 20 to 
make lunch and bought 6 more, how many apples 
do they have?

Model Input

Model Output Model Output

Model Input

Figure 1: Chain-of-thought prompting enables large language models to tackle complex arithmetic,
commonsense, and symbolic reasoning tasks. Chain-of-thought reasoning processes are highlighted.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).
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• COT requires ICL examples explicitly enumerating the reasoning 
steps


• Turn out reasoning steps can often be elicited without ICL 
examples


• Main idea: just “tell” the model to reason in steps
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(c) Zero-shot
Q: A juggler can juggle 16 balls. Half of the balls are golf balls, 
and half of the golf balls are blue. How many blue golf balls are 
there?
A: The answer (arabic numerals) is 

(Output) 8 X

(d) Zero-shot-CoT (Ours)
Q: A juggler can juggle 16 balls. Half of the balls are golf balls, 
and half of the golf balls are blue. How many blue golf balls are 
there?
A: Let’s think step by step. 

(Output) There are 16 balls in total. Half of the balls are golf 
balls. That means that there are 8 golf balls. Half of the golf balls 
are blue. That means that there are 4 blue golf balls. ✓

Q: Roger has 5 tennis balls. He buys 2 more cans of tennis 
balls. Each can has 3 tennis balls. How many tennis balls does 
he have now?
A: Roger started with 5 balls. 2 cans of 3 tennis balls each is 6 
tennis balls. 5 + 6 = 11. The answer is 11.

Q: A juggler can juggle 16 balls. Half of the balls are golf balls, 
and half of the golf balls are blue. How many blue golf balls are 
there?
A:

(Output) The juggler can juggle 16 balls. Half of the balls are golf 
balls. So there are 16 / 2 = 8 golf balls. Half of the golf balls are 
blue. So there are 8 / 2 = 4 blue golf balls. The answer is 4. ✓

(b) Few-shot-CoT(a) Few-shot

Q: Roger has 5 tennis balls. He buys 2 more cans of tennis 
balls. Each can has 3 tennis balls. How many tennis balls does 
he have now?
A: The answer is 11. 

Q: A juggler can juggle 16 balls. Half of the balls are golf balls, 
and half of the golf balls are blue. How many blue golf balls are 
there?
A:

(Output) The answer is 8. X

Figure 1: Example inputs and outputs of GPT-3 with (a) standard Few-shot ([Brown et al., 2020]), (b)
Few-shot-CoT ([Wei et al., 2022]), (c) standard Zero-shot, and (d) ours (Zero-shot-CoT). Similar to
Few-shot-CoT, Zero-shot-CoT facilitates multi-step reasoning (blue text) and reach correct answer
where standard prompting fails. Unlike Few-shot-CoT using step-by-step reasoning examples per
task, ours does not need any examples and just uses the same prompt “Let’s think step by step” across
all tasks (arithmetic, symbolic, commonsense, and other logical reasoning tasks).

In contrast to the excellent performance of LLMs in intuitive and single-step system-1 [Stanovich
and West, 2000] tasks with task-specific few-shot or zero-shot prompting [Liu et al., 2021b], even
language models at the scale of 100B or more parameters had struggled on system-2 tasks requiring
slow and multi-step reasoning [Rae et al., 2021]. To address this shortcoming, Wei et al. [2022],
Wang et al. [2022] have proposed chain of thought prompting (CoT), which feed LLMs with the
step-by-step reasoning examples rather than standard question and answer examples (see Fig. 1-a).
Such chain of thought demonstrations facilitate models to generate a reasoning path that decomposes
the complex reasoning into multiple easier steps. Notably with CoT, the reasoning performance then
satisfies the scaling laws better and jumps up with the size of the language models. For example,
when combined with the 540B parameter PaLM model [Chowdhery et al., 2022], chain of thought
prompting significantly increases the performance over standard few-shot prompting across several
benchmark reasoning tasks, e.g., GSM8K (17.9% ! 58.1%).

While the successes of CoT prompting [Wei et al., 2022], along those of many other task-specific
prompting work [Gao et al., 2021, Schick and Schütze, 2021, Liu et al., 2021b], are often attributed
to LLMs’ ability for few-shot learning [Brown et al., 2020], we show that LLMs are decent zero-shot
reasoners by adding a simple prompt, Let’s think step by step, to facilitate step-by-step thinking before
answering each question (see Figure 1). Despite the simplicity, our Zero-shot-CoT successfully
generates a plausible reasoning path in a zero-shot manner and reaches the correct answer in a
problem where the standard zero-shot approach fails. Importantly, our Zero-shot-CoT is versatile and
task-agnostic, unlike most prior task-specific prompt engineering in the forms of examples (few-shot)
or templates (zero-shot) [Liu et al., 2021b]: it can facilitate step-by-step answers across various
reasoning tasks, including arithmetic (MultiArith [Roy and Roth, 2015], GSM8K [Cobbe et al., 2021],
AQUA-RAT [Ling et al., 2017], and SVAMP [Patel et al., 2021]), symbolic reasoning (Last letter and
Coin flip), commonsense reasoning (CommonSenseQA [Talmor et al., 2019] and Strategy QA [Geva
et al., 2021]), and other logical reasoning tasks (Date understanding and Tracking Shuffled Objects
from BIG-bench [Srivastava et al., 2022]) without modifying the prompt per task.

We empirically evaluate Zero-shot-CoT against other prompting baselines in Table 2. While our
Zero-shot-CoT underperforms Few-shot-CoT with carefully-crafted and task-specific step-by-step ex-
amples, Zero-shot-CoT achieves enormous score gains compared to the zero-shot baseline, e.g. from
17.7% to 78.7% on MultiArith and from 10.4% to 40.7% on GSM8K with large-scale InstructGPT
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• COT requires ICL examples explicitly enumerating the reasoning 
steps


• Turn out reasoning steps can often be elicited without ICL 
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• Main idea: just “tell” the model to reason in steps


• Challenge: the answer is often entangled in the reasoning text — 
how to extract it?
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(c) Zero-shot
Q: A juggler can juggle 16 balls. Half of the balls are golf balls, 
and half of the golf balls are blue. How many blue golf balls are 
there?
A: The answer (arabic numerals) is 

(Output) 8 X

(d) Zero-shot-CoT (Ours)
Q: A juggler can juggle 16 balls. Half of the balls are golf balls, 
and half of the golf balls are blue. How many blue golf balls are 
there?
A: Let’s think step by step. 

(Output) There are 16 balls in total. Half of the balls are golf 
balls. That means that there are 8 golf balls. Half of the golf balls 
are blue. That means that there are 4 blue golf balls. ✓

Q: Roger has 5 tennis balls. He buys 2 more cans of tennis 
balls. Each can has 3 tennis balls. How many tennis balls does 
he have now?
A: Roger started with 5 balls. 2 cans of 3 tennis balls each is 6 
tennis balls. 5 + 6 = 11. The answer is 11.

Q: A juggler can juggle 16 balls. Half of the balls are golf balls, 
and half of the golf balls are blue. How many blue golf balls are 
there?
A:

(Output) The juggler can juggle 16 balls. Half of the balls are golf 
balls. So there are 16 / 2 = 8 golf balls. Half of the golf balls are 
blue. So there are 8 / 2 = 4 blue golf balls. The answer is 4. ✓

(b) Few-shot-CoT(a) Few-shot

Q: Roger has 5 tennis balls. He buys 2 more cans of tennis 
balls. Each can has 3 tennis balls. How many tennis balls does 
he have now?
A: The answer is 11. 

Q: A juggler can juggle 16 balls. Half of the balls are golf balls, 
and half of the golf balls are blue. How many blue golf balls are 
there?
A:

(Output) The answer is 8. X

Figure 1: Example inputs and outputs of GPT-3 with (a) standard Few-shot ([Brown et al., 2020]), (b)
Few-shot-CoT ([Wei et al., 2022]), (c) standard Zero-shot, and (d) ours (Zero-shot-CoT). Similar to
Few-shot-CoT, Zero-shot-CoT facilitates multi-step reasoning (blue text) and reach correct answer
where standard prompting fails. Unlike Few-shot-CoT using step-by-step reasoning examples per
task, ours does not need any examples and just uses the same prompt “Let’s think step by step” across
all tasks (arithmetic, symbolic, commonsense, and other logical reasoning tasks).

In contrast to the excellent performance of LLMs in intuitive and single-step system-1 [Stanovich
and West, 2000] tasks with task-specific few-shot or zero-shot prompting [Liu et al., 2021b], even
language models at the scale of 100B or more parameters had struggled on system-2 tasks requiring
slow and multi-step reasoning [Rae et al., 2021]. To address this shortcoming, Wei et al. [2022],
Wang et al. [2022] have proposed chain of thought prompting (CoT), which feed LLMs with the
step-by-step reasoning examples rather than standard question and answer examples (see Fig. 1-a).
Such chain of thought demonstrations facilitate models to generate a reasoning path that decomposes
the complex reasoning into multiple easier steps. Notably with CoT, the reasoning performance then
satisfies the scaling laws better and jumps up with the size of the language models. For example,
when combined with the 540B parameter PaLM model [Chowdhery et al., 2022], chain of thought
prompting significantly increases the performance over standard few-shot prompting across several
benchmark reasoning tasks, e.g., GSM8K (17.9% ! 58.1%).

While the successes of CoT prompting [Wei et al., 2022], along those of many other task-specific
prompting work [Gao et al., 2021, Schick and Schütze, 2021, Liu et al., 2021b], are often attributed
to LLMs’ ability for few-shot learning [Brown et al., 2020], we show that LLMs are decent zero-shot
reasoners by adding a simple prompt, Let’s think step by step, to facilitate step-by-step thinking before
answering each question (see Figure 1). Despite the simplicity, our Zero-shot-CoT successfully
generates a plausible reasoning path in a zero-shot manner and reaches the correct answer in a
problem where the standard zero-shot approach fails. Importantly, our Zero-shot-CoT is versatile and
task-agnostic, unlike most prior task-specific prompt engineering in the forms of examples (few-shot)
or templates (zero-shot) [Liu et al., 2021b]: it can facilitate step-by-step answers across various
reasoning tasks, including arithmetic (MultiArith [Roy and Roth, 2015], GSM8K [Cobbe et al., 2021],
AQUA-RAT [Ling et al., 2017], and SVAMP [Patel et al., 2021]), symbolic reasoning (Last letter and
Coin flip), commonsense reasoning (CommonSenseQA [Talmor et al., 2019] and Strategy QA [Geva
et al., 2021]), and other logical reasoning tasks (Date understanding and Tracking Shuffled Objects
from BIG-bench [Srivastava et al., 2022]) without modifying the prompt per task.

We empirically evaluate Zero-shot-CoT against other prompting baselines in Table 2. While our
Zero-shot-CoT underperforms Few-shot-CoT with carefully-crafted and task-specific step-by-step ex-
amples, Zero-shot-CoT achieves enormous score gains compared to the zero-shot baseline, e.g. from
17.7% to 78.7% on MultiArith and from 10.4% to 40.7% on GSM8K with large-scale InstructGPT
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Q: On average Joe throws 25 punches per 
minute.  A fight lasts 5 rounds of 3 minutes.  How 
many punches did he throw?
A: Let's think step by step. 

In one minute, Joe throws 25 punches. 
In three minutes, Joe throws 3 * 25 = 75 punches. 
In five rounds, Joe throws 5 * 75 = 375 punches. 

Q: On average Joe throws 25 punches per 
minute.  A fight lasts 5 rounds of 3 ・・・
A: Let's think step by step.

In one minute, Joe throws 25 punches. ・・・In five 
rounds, Joe throws 5 * 75 = 375 punches. . 
Therefore, the answer (arabic numerals) is

375.

LLM

LLM

【1st prompt】
Reasoning Extraction

【2nd prompt】
Answer Extraction

Figure 2: Full pipeline of Zero-shot-CoT as described in § 3: we first use the first “reasoning” prompt
to extract a full reasoning path from a language model, and then use the second “answer” prompt to
extract the answer in the correct format from the reasoning text.

in Figure 1). In summary, Few-shot-CoT [Wei et al., 2022] requires careful human engineering of
a few prompt examples with specific answer formats per task, while Zero-shot-CoT requires less
engineering but requires prompting LLMs twice.

1st prompt: reasoning extraction In this step we first modify the input question x into a prompt
x0 using a simple template “Q: [X]. A: [T]”, where [X] is an input slot for x and [T] is an slot
for hand-crafted trigger sentence t that would extract chain of though to answer the question x. For
example, if we use “Let’s think step by step” as a trigger sentence, the prompt x0 would be “Q: [X].
A: Let’s think step by step.”. See Table 4 for more trigger examples. Prompted text x0 is then fed into
a language model and generate subsequent sentence z. We can use any decoding strategy, but we
used greedy decoding throughout the paper for the simplicity.

2nd prompt: answer extraction In the second step, we use generated sentence z along with
prompted sentence x0 to extract the final answer from the language model. To be concrete, we simply
concatenate three elements as with “[X0] [Z] [A]”: [X0] for 1st prompt x0, [Z] for sentence z
generated at the first step, and [A] for a trigger sentence to extract answer. The prompt for this step
is self-augmented, since the prompt contains the sentence z generated by the same language model.
In experiment, we use slightly different answer trigger depending on the answer format. For example,
we use “Therefore, among A through E, the answer is” for multi-choice QA, and “Therefore, the
answer (arabic numerals) is” for math problem requiring numerical answer. See Appendix A.5 for
the lists of answer trigger sentences. Finally, the language model is fed the prompted text as input to
generate sentences ŷ and parse the final answer. See “Answer Cleansing” at §4 for the parser details.

4 Experiment

Tasks and datasets We evaluate our proposal on 12 datasets from four categories of reasoning
tasks: arithmetic, commonsense, symbolic, and other logical reasoning tasks. See Appendix A.2 for
the detailed description of each datasets.

For arithmetic reasoning, we consider the following six datasets: (1) SingleEq [Koncel-Kedziorski
et al., 2015], (2) AddSub [Hosseini et al., 2014], (3) MultiArith [Roy and Roth, 2015], (4) AQUA-
RAT [Ling et al., 2017], (5) GSM8K [Cobbe et al., 2021], and (6) SVAMP [Patel et al., 2021]. The
first three are from the classic Math World Problem Repository [Koncel-Kedziorski et al., 2016],
and the last three are from more recent benchmarks. SingleEq and AddSub contain easier problems,
which do not require multi-step calculation to solve the tasks. MultiArith, AQUA-RAT, GSM8k, and
SVAMP are more challenging datasets that require multi-step reasoning to solve.

For commonsense reasoning, we use CommonsenseQA [Talmor et al., 2019] and StrategyQA [Geva
et al., 2021]. CommonsenseQA asks questions with complex semantics that often require reasoning
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(c) GMS8K on PaLM

Figure 3: Model scale study with various types of models. S: text-ada-001, M: text-babbage-001, L:
text-curie-001, XL: text-davinci-002. See Appendix A.3 and E for the detail.

Table 3: Examples generated by Zero-Shot-CoT on CommonsenseQA for Error Analysis.

Example 1 (Reasoning is correct.) Example 2 (Model cannot choose only one.)
Q: Where is a well used toy car likely to be found?
Answer Choices: (A) child’s room (B) boy’s bed-
room (C) own home (D) toy store (E) house

Q: What would be necessary for getting in shape?
Answer Choices: (A) good health (B) exercise (C)
muscle tone (D) sweat (E) feel better

A: Let’s think step by step. A toy car is likely
to be found in a child’s room. A child’s room is
likely to be found in a house. Therefore, a toy
car is likely to be found in a house.
Therefore, among A through E, the answer is E.
7 (GT : A, Zero-shot: A)

A: Let’s think step by step. In order to get in shape,
you need to be able to do three things:
1. Exercise regularly
2. Eat a healthy diet
3. Get enough sleep
If you can do all three of those things, then you will
be well on your way to getting in shape! Therefore,
among A through E, the answer is B, C, and D.
(GT : B, Zero-shot: B)

Comparison with other baselines Table 2 compares the performances on two arithmetic reasoning
benchmarks (MultiArith and GSM8K) across Zero-shot-CoT and baselines. The large gap between
standard prompting (1st block) and chain of thought prompting (2nd block) suggests that these
tasks are difficult without eliciting multi-step reasoning. Major improvements are confirmed on
both Instruct GPT-3 (text-davinci-002) and PaLM (540B) models (4th block). While Zero-shot-CoT
naturally underperforms Few-shot-CoT, it substantially outperforms standard Few-shot prompting
with even 8 examples per task. For GSM8K, Zero-shot-CoT with Instruct GPT-3 (text-davinci-002)
also outperforms finetuned GPT-3 and standard few-shot prompting with large models (PaLM, 540B),
reported in Wei et al. [2022] (3rd and 4th block). See App. D for more experiment results with PaLM.

Does model size matter for zero-shot reasoning? Figure 3 compares performance of various
language models on MultiArith / GSM8K. Without chain of thought reasoning, the performance
does not increase or increases slowly as the model scale is increased, i.e., the curve is mostly flat. In
contrast, the performance drastically increases with chain of thought reasoning, as the model size
gets bigger, for Original/Instruct GPT-3 and PaLM. When the model size is smaller, chain of thought
reasoning is not effective. This result aligns with the few-shot experiment results in Wei et al. [2022].
Appendix E shows extensive experiment results using wider variety of language models, including
GPT-2, GPT-Neo, GPT-J, T0, and OPT. We also manually investigated the quality of generated chain
of thought, and large-scale models clearly demonstrate better reasoning (See Appendix B for the
sampled outputs for each model).

Error Analysis To better understand the behavior of Zero-shot-CoT, we manually investigated
randomly selected examples generated by Instruct-GPT3 with Zero-shot-CoT prompting. See Ap-
pendix C for examples, where some of the observations include: (1) In commonsense reasoning
(CommonsenseQA), Zero-shot-CoT often produces flexible and reasonable chain of thought even
when the final prediction is not correct. Zero-shot-CoT often output multiple answer choices when
the model find it is difficult to narrow it down to one (see Table 3 for examples). (2) In arithmetic
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Table 4: Robustness study against template measured on the MultiArith dataset with text-davinci-002.
(*1) This template is used in Ahn et al. [2022] where a language model is prompted to generate
step-by-step actions given a high-level instruction for controlling robotic actions. (*2) This template
is used in Reynolds and McDonell [2021] but is not quantitatively evaluated.

No. Category Template Accuracy

1 instructive Let’s think step by step. 78.7
2 First, (*1) 77.3
3 Let’s think about this logically. 74.5
4 Let’s solve this problem by splitting it into steps. (*2) 72.2
5 Let’s be realistic and think step by step. 70.8
6 Let’s think like a detective step by step. 70.3
7 Let’s think 57.5
8 Before we dive into the answer, 55.7
9 The answer is after the proof. 45.7

10 misleading Don’t think. Just feel. 18.8
11 Let’s think step by step but reach an incorrect answer. 18.7
12 Let’s count the number of "a" in the question. 16.7
13 By using the fact that the earth is round, 9.3

14 irrelevant By the way, I found a good restaurant nearby. 17.5
15 Abrakadabra! 15.5
16 It’s a beautiful day. 13.1

- (Zero-shot) 17.7

Table 5: Robustness study of Few-shot-CoT against examples. When the examples are from en-
tirely different tasks, the performance generally becomes worse, but when the answer formats are
matched (i.e. CommonsenseQA to AQUA-RAT, multiple-choice), the performance loss is less severe.
†CommonsenseQA samples are used in this variation

Zero-shot Few-shot-CoT † Zero-shot-CoT Few-shot-CoT

AQUA-RAT 22.4 31.9 33.5 39.0
MultiArith 17.7 27.0 78.7 88.2

reasoning (MultiArith), Zero-shot-CoT and Few-shot-CoT show substantial differences regarding
the error patterns. First, Zero-shot-CoT tends to output unnecessary steps of reasoning after getting
the correct prediction, which results in changing the prediction to incorrect one. Zero-shot-CoT also
sometimes does not start reasoning, just rephrasing the input question. In contrast, Few-shot-CoT
tend to fail when generated chain of thought include ternary operation, e.g. (3 + 2) ⇤ 4.

How does prompt selection affect Zero-shot-CoT? We validate the robustness of Zero-shot-CoT
against input prompts. Table 4 summarizes performance using 16 different templates with three
categories. Specifically, following Webson and Pavlick [2022], the categories include instructive
(encourage reasoning), misleading (discourage reasoning or encouraging reasoning but in a wrong
way), and irrelevant (nothing to do with reasoning). The results indicate that the performance is
improved if the text is written in a way that encourages chain of thought reasoning, i.e., the templates
are within "instructive" category. However, the difference in accuracy is significant depending on
the sentence. In this experiment, "Let’s think step by step." achieves the best results. Interestingly,
it is found that different templates encourage the model to express reasoning quite differently (see
Appendix B for sample outputs by each template). In contrast, when we use misleading or irrelevant
templates, the performance does not improve. It remains an open question how to automatically
create better templates for Zero-shot-CoT.

How does prompt selection affect Few-shot-CoT? Table 5 shows the performance of Few-
shot-CoT when using examples from different datasets: CommonsenseQA to AQUA-RAT and
CommonsenseQA to MultiArith. The domains are different in both cases, but the answer format
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zero-shot CoT on PaLM without finetuning were only shown for math word problems, which
differ substantially from the types of problems in BBH.
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Figure 6: Zero-shot performance of PaLM and Flan-PaLM on a set of 23 challenging BIG-
Bench tasks (BBH). Flan-PaLM benefits from chain-of-thought (CoT) generation activated
via “let’s think step-by-step.”

5. Putting it all together

Given the prior results on scaling the number of tasks and including chain-of-thought data,
we now show the generality of instruction finetuning by applying it to several models of
different sizes, architectures, and training objectives. In addition to the PaLM family of
models, we instruction-finetune T5 models which have an encoder-decoder architecture, as
opposed to PaLM’s decoder-only architecture. As an extended version of the PaLM 62B
model, we instruction-finetune cont-PaLM, which is a 62B PaLM-model initialized from
PaLM-62B and then pretrained for 500B more tokens (Chowdhery et al., 2022). Finally, we
instruction-finetune U-PaLM, which is a 540B PaLM model initialized from PaLM-540B
and then pretrained with an UL2 objective for 20k additional steps (Tay et al., 2022a,b).

These evaluation results are shown in Table 5. Instruction finetuning improves normalized
average performance by a large margin for all model types. For T5 models without instruction
finetuning, we use LM-adapted models, which were produced by training T5 on 100B
additional tokens from C4 on a standard language modeling objective (Lester et al., 2021).
Given the difficulty of our evaluation benchmarks and the fact that T5 is not multilingual,
T5 models benefited the most from instruction finetuning compared with their non-finetuned
models. These results were quite strong for some benchmarks—for example, Flan-T5-XL
is only 3B parameters and achieves a MMLU score of 52.4%, surpassing GPT-3 175B’s
score of 43.9%. As another highlight, the strongest overall model we achieve in this paper
combines instruction finetuning with UL2 continued pre-training that was used in the U-
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