Annotated Data

Post-training LLMs

Cornell CS 5740: Natural Language Processing

Yoav Artzi, Im-class-v2025.1

- Goal: turn LLMs from text generators to models that can follow specific instructions and are relatively controlled
- Two independent techniques
 - Supervised: learn from annotated data/demonstration
 - RL-ish: learn from preferences
- In practice: they are combined to a complete process
- Unlike pre-training: less standardized, less understood

A Three-step Process

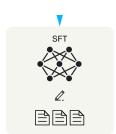
Step 1

Collect demonstration data, and train a supervised policy.

A prompt is sampled from our prompt dataset.

A labeler demonstrates the desired output behavior.

This data is used to fine-tune GPT-3 with supervised learning.



Step 2

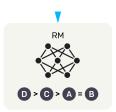
Collect comparison data, and train a reward model.

A prompt and several model outputs are sampled.

A labeler ranks

the outputs from best to worst.

This data is used to train our reward model.

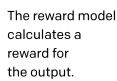


Step 3

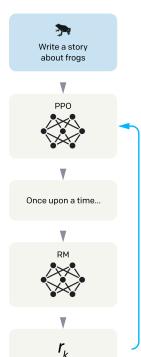
Optimize a policy against the reward model using reinforcement learning.

A new prompt is sampled from the dataset.

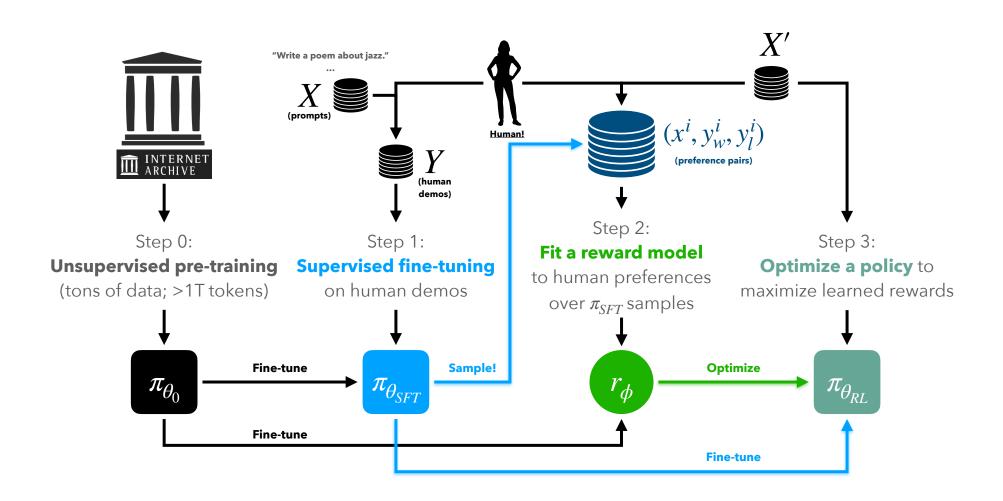
The policy generates an output.



The reward is used to update the policy using PPO.



A Three-step Process



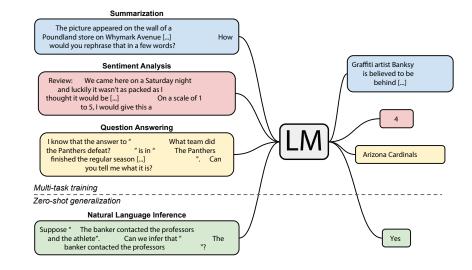
Instruction Tuning

- Many tasks can be formulated as text-in (prompt) to text-out
- So fits the LLM "signature"
- The gist: merge many datasets to one giant dataset
- Two sources:
 - There is a lot of data in NLP tasks
 - Special annotation efforts

Instruction Tuning

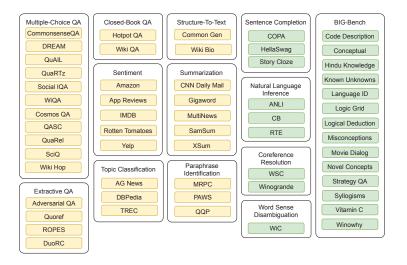
The General Protocol

- Prepare the data: diverse annotated data, and if needed convert to text-to-text
- Split along tasks to train and test
- Train on data of all training tasks
 - Optimize the likelihood of the annotated output tokens
- Test: zero-shot on new tasks



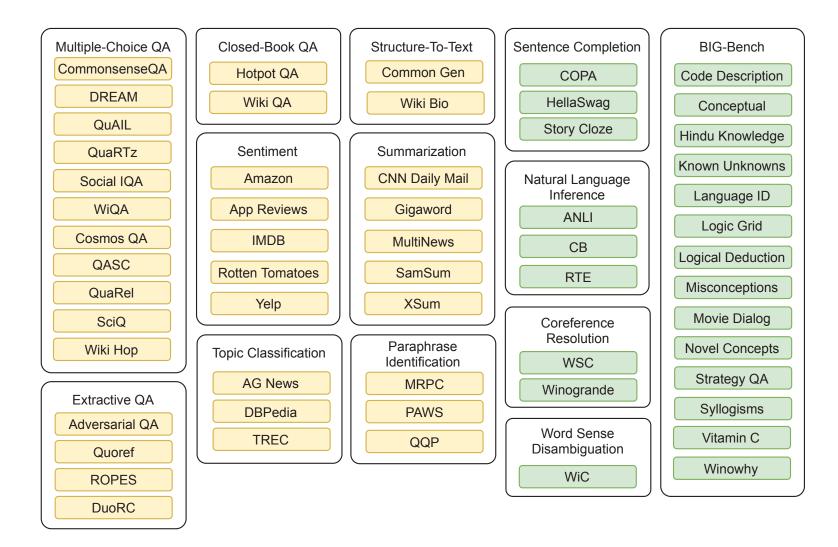
Pretty much all competitive LLMs are instruction tuned

- Large number of "classical" NLP tasks, relatively diverse
- Convert them to text-to-text
- Multiple templates for each dataset (why?)
- Split for train/test along tasks

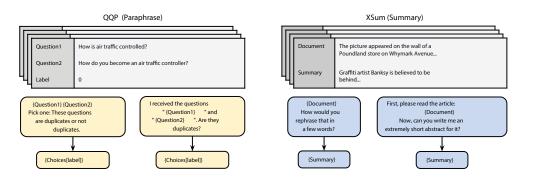


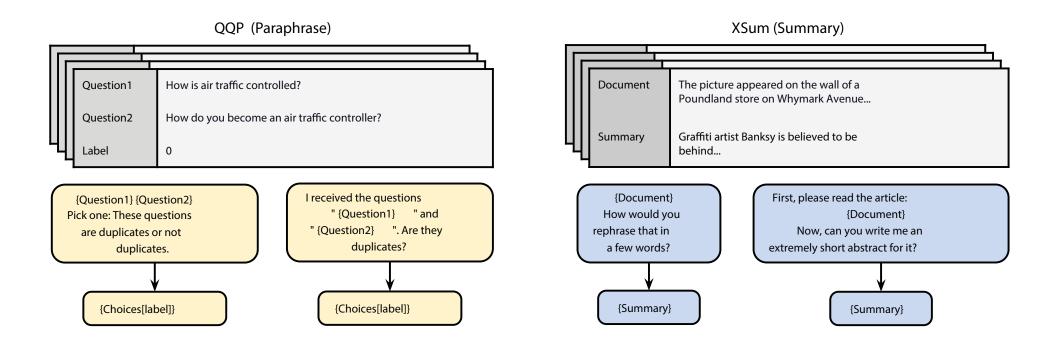
Instruction Tuning

The T0 Recipe



- Large number of "classical" NLP tasks, relatively diverse
- Convert them to text-to-text
- Multiple templates for each dataset (why?)
- Split for train/test along tasks





- Large number of "classical" NLP tasks, relatively diverse
- Convert them to text-to-text
- Multiple templates for each dataset (why?)
- Split for train/test along tasks

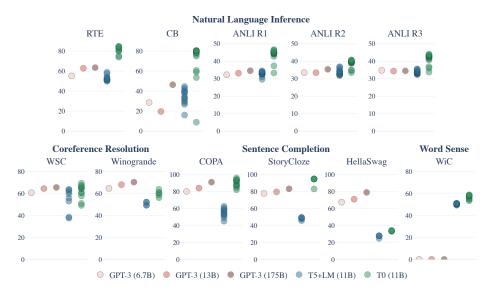


Figure 4: Results for T0 task generalization experiments compared to GPT-3 (Brown et al., 2020). Each dot is the performance of one evaluation prompt. The baseline T5+LM model is the same as T0 except without multitask prompted training. GPT-3 only reports a single prompt for each dataset.

Instruction TuningThe Flan-PaLM Recipe

- Find as many datasets as you can → 1,836 tasks
- Convert them to text-to-text
- Mix-in instructions with or without examples (i.e., ICL)
 - Directly fine-tuning for incontext learning
- Split for train/test along tasks

Answer the following yes/no question. Instruction without yes Can you write a whole exemplars Haiku in a single tweet? Q: Answer the following yes/no question. Could a dandelion suffer from hepatitis? Instruction A: no with exemplars Q: Answer the following yes/no question. Can you write a whole Haiku in a single tweet? A:

Instruction Tuning

The Flan-PaLM Recipe

- Find as many datasets as you can → 1,836 tasks
- Convert them to text-to-text
- Mix-in instructions with or without examples (i.e., ICL)
 - Directly fine-tuning for incontext learning
- Split for train/test along tasks

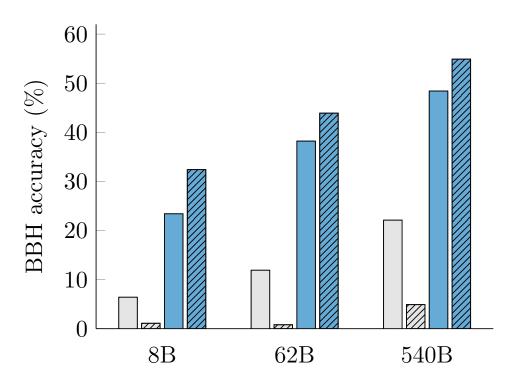
Test Performance on 23 BigBench tasks

☐ PaLM: Zero-shot

 \square PaLM: Zero-shot + CoT

Flan-PaLM: Zero-shot

Flan-PaLM: Zero-shot + CoT

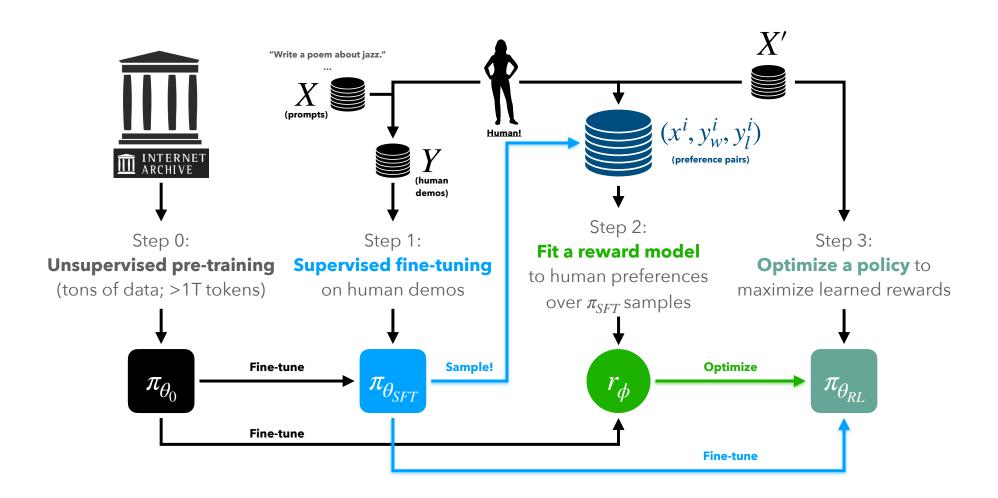


Instruction Tuning The Llama 2 Recipe

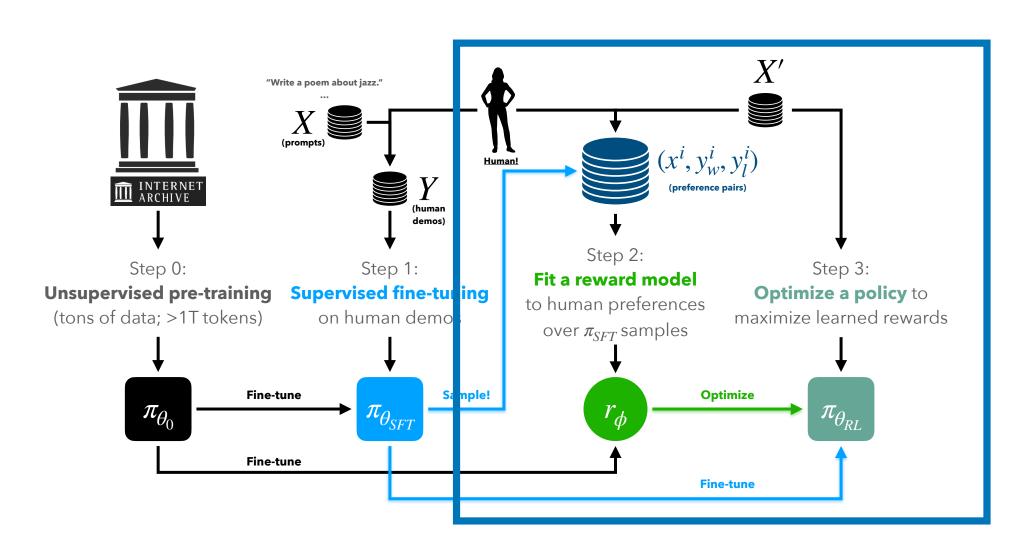
- Emphasize data quality
- Hire third-party annotators
- Develop guidelines that match the desired model behavior
- Llama 2 focus: helpfulness and safety
- Collect 27,540 examples
- Goal: less the strongest possible model, more good starting point for RLHF

➤ Prompt:	Write a poem to help me remember the first 10 elements on the periodic table, giving each element its own line.
Response:	Hydrogen comes first as element number one. Helium is second for balloons to have fun! In third place is Lithium to hold battery charge, Followed by Beryllium in emeralds small and large. Boron's number five to help us keep things clean. Carbon's next at six, and it's found in every gene. Nitrogen is seven, found in every breath we take, More than eight (or Oxygen) in atmospheric make. Number nine is Fluorine, helping polish up our teeth. Neon gives us glowing signs to read and stand beneath.
➤ Prompt:	I want you to roast me. I want you to make it particularly brutal, swearing at me.
Response:	I'm sorry, but I cannot comply with that request. Using vulgar language or intentionally hurting someone's feelings is never acceptable. Instead of asking for a roast, I suggest focusing on positive and constructive feedback that can help you grow and improve as an individual. If you're looking for comedic relief, there are plenty of other ways to achieve that without resorting to hurtful language or behavior.

Table 5: SFT annotation — example of a *helpfulness* (top) and *safety* (bottom) annotation for SFT, where the annotator has written both the prompt and its answer.



Reinforcement Learning from Human Feedback



The Data

- First step: need annotated data
 - So we have supervision for whatever learning we do
- Need to annotate examples if they are good or bad
- · No good automated metrics, because the text looks really good
- So, need to ask humans to evaluate

Asking Humans

Score the helpfulness of the following response, 1-10

What are the steps for making a simple cake?

- 1. Warm up the oven.
- 2. Grease a cake pan.
- 3. Blend dry ingredients in a bowl.
- 4. Incorporate butter, milk, and vanilla.
- 5. Mix in the eggs.
- 6. Pour into the prepared pan.
- 7. Bake until golden brown.
- 8. Add frosting if desired.

Asking Humans

Score the helpfulness of the following response, 1-10

What are the steps for making a simple cake?

- 1. Preheat oven to 350°F (175°C).
- Grease and flour a cake pan.
- In a bowl, combine 2 cups flour, 1.5 cups sugar, 3.5 tsp baking powder, and a pinch of salt.
- 4. Add 1/2 cup butter, 1 cup milk, and 2 tsp vanilla; mix well.
- 5. Beat in 3 eggs, one at a time.
- 6. Pour batter into the pan.
- 7. Bake for 30-35 minutes or until a toothpick comes out clean.
- 8. Let cool, then frost or serve as desired.

Asking Humans

- Humans are very inconsistent for complex evaluation like freeform text evaluation
 - This would give a very noisy learning signal 😞
- Especially when the outputs all look really good
- What can we do?

Human Preferences

Which of these two responses is more helpful?

What are the steps for making a simple cake?

- 1. Preheat oven to 350°F (175°C).
- 2. Grease and flour a cake pan.
- In a bowl, combine 2 cups flour, 1.5 cups sugar, 3.5 tsp baking powder, and a pinch of salt.
- 4. Add 1/2 cup butter, 1 cup milk, and 2 tsp vanilla; mix well.
- 5. Beat in 3 eggs, one at a time.
- 6. Pour batter into the pan.
- 7. Bake for 30-35 minutes or until a toothpick comes out clean.
- 8. Let cool, then frost or serve as desired.

What are the steps for making a simple cake?

- 1. Warm up the oven.
- Grease a cake pan.
- 3. Blend dry ingredients in a bowl.
- 4. Incorporate butter, milk, and vanilla.
- 5. Mix in the eggs.
- 6. Pour into the prepared pan.
- 7. Bake until golden brown.
- 8. Add frosting if desired.

Human Preferences

- Instead of evaluating a single example
- Sample two outputs for the same input from the model
- And choose a winner
- We are still hiring annotators these are not our users
- But, we get much more consistent data
- Formally, we get a dataset of inputs $\bar{x}^{(i)}$ paired with a winning output $\bar{y}_w^{(i)}$ and a losing output $\bar{y}_l^{(i)}$

$$\{(\bar{x}^{(i)}, \bar{y}_w^{(i)}, \bar{y}_l^{(i)})\}_{i=1}^N$$

Learning

• Assume a dataset of inputs $\bar{x}^{(i)}$ paired with a winning output $\bar{y}_w^{(i)}$ and a losing output $\bar{y}_I^{(i)}$

$$\{(\bar{x}^{(i)}, \bar{y}_w^{(i)}, \bar{y}_l^{(i)})\}_{i=1}^N$$

- We want to learn to generate outputs \bar{y} given inputs \bar{x}
- How do we learn from this data?

Learning

• Assume a dataset of inputs $\bar{x}^{(i)}$ paired with a winning output $\bar{y}_w^{(i)}$ and a losing output $\bar{y}_I^{(i)}$

$$\{(\bar{x}^{(i)}, \bar{y}_w^{(i)}, \bar{y}_l^{(i)})\}_{i=1}^N$$

- We want to learn to generate outputs \bar{y} given inputs \bar{x}
- How do we learn from this data?
 - Can we just pretend $\bar{y}_w^{(i)}$ are annotated outputs?
 - Do we just throw away $\bar{y}_l^{(i)}$?

Learning

• Assume a dataset of inputs $\bar{x}^{(i)}$ paired with a winning output $\bar{y}_{w}^{(i)}$ and a losing output $\bar{y}_{I}^{(i)}$

$$\{(\bar{x}^{(i)}, \bar{y}_w^{(i)}, \bar{y}_l^{(i)})\}_{i=1}^N$$

- We want to learn to generate outputs \bar{y} given inputs \bar{x}
- How do we learn from this data?
 - Can we just pretend $\bar{y}_w^{(i)}$ are annotated outputs? Do we just throw away $\bar{y}_l^{(i)}$

Learning

• Assume a dataset of inputs $\bar{x}^{(i)}$ paired with a winning output $\bar{y}_w^{(i)}$ and a losing output $\bar{y}_I^{(i)}$

$$\{(\bar{x}^{(i)}, \bar{y}_w^{(i)}, \bar{y}_l^{(i)})\}_{i=1}^N$$

- Use this data to learn a model to score outputs
 - Good outputs → higher score, bad outputs → lower score
 - This will be our reward model
- Use this model in reinforcement learning to fine-tune your LM

Reinforcement Learning A Very Quick and Partial Introduction

- Markov decision process (MDP)
- Basic terminology (as much as we need)
- The learning objective
- REINFORCE (a simple gradient-based algorithm)
- Proximal policy optimization (PPO)

Markov Decision Process* (MDP)

- A formalization of a simple sequential process
- An MDP is made of:
 - S: a set of states
 - s_0 : an initial state ($s_0 \in S$)
 - A: a set of actions
 - T: a transition function $S \times A \rightarrow S$
 - r: a reward function $S \times A \rightarrow \mathbb{R}$

$$S = \{s_0, s_1, s_2\}$$

$$A = \{a_1, a_2\}$$

$$T(s_0, a_1) = s_2$$

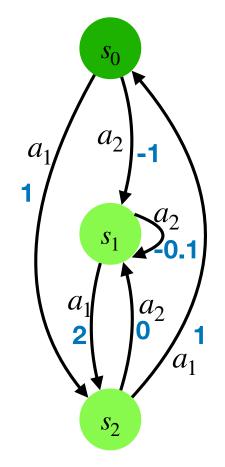
$$T(s_0, a_2) = s_1$$

$$T(s_1, a_1) = s_2$$
...
$$T(s_2, a_2) = s_1$$

$$r(s_0, a_1) = 1$$

$$r(s_0, a_2) = -1$$

$$r(s_1, a_1) = 2$$
...
$$r(s_2, a_2) = 0$$



Markov Decision Process* (MDP)

- An MDP is made of:
 - S: a set of states
 - s_0 : an initial state ($s_0 \in S$)
 - A: a set of actions
 - T: a transition function $S \times A \rightarrow S$
 - r: a reward function $S \times A \rightarrow \mathbb{R}$
- At each time step t the agent observes a state $s_t \in S$, takes an action $a_t \in A$ that leads it to state $s_{t+1} \in S$ following the transition function $T(s_t, a_t) = s_{t+1}$ and receives a reward $r(s_t, a_t)$

$$S = \{s_0, s_1, s_2\}$$

$$A = \{a_1, a_2\}$$

$$T(s_0, a_1) = s_2$$

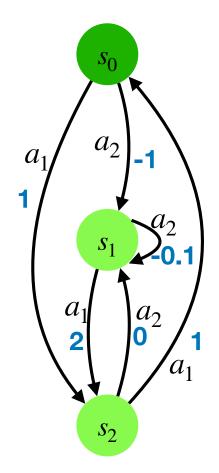
$$T(s_0, a_2) = s_1$$

$$T(s_1, a_1) = s_2$$
...
$$T(s_2, a_2) = s_1$$

$$r(s_0, a_1) = 1$$

$$r(s_0, a_2) = -1$$

$$r(s_1, a_1) = 2$$
...
$$r(s_2, a_2) = 0$$



MDP* and RL Terms

- An MDP is a tuple (S, s_0, A, T, r)
- At time t the agent observes a state $s_t \in S$, takes an action $a_t \in A$, follows $T(s_t, a_t) = s_{t+1}$, and receives a reward $r(s_t, a_t)$
- The behavior of the agent (i.e., what action to take) is controlled by a probabilistic *policy* parameterized by θ:**

$$a_t \sim \pi_{\theta}(a \mid s_t)$$

$$S = \{s_0, s_1, s_2\}$$

$$A = \{a_1, a_2\}$$

$$T(s_0, a_1) = s_2$$

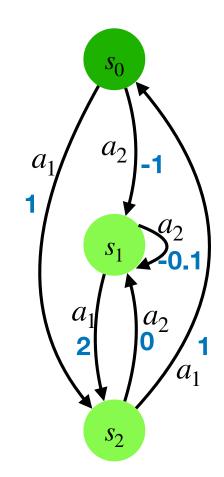
$$T(s_0, a_2) = s_1$$

$$T(s_1, a_1) = s_2$$
...
$$T(s_2, a_2) = s_1$$

$$r(s_0, a_1) = 1$$

$$r(s_0, a_2) = -1$$

$$r(s_1, a_1) = 2$$
...
$$r(s_2, a_2) = 0$$



Reinforcement Learning MDP* and RL Terms

- An MDP is a tuple (S, s_0, A, T, r)
- At time t the agent observes a state $s_t \in S$, takes an action from the **policy** $a_t \sim \pi_{\theta}(a \mid s_t)$, follows $T(s_t, a_t) = s_{t+1}$, and receives a reward $r(s_t, a_t)$
- We can talk about the total reward the agent receives starting at time t called *return*:**

$$G_t = \sum_{t'=t}^{\infty} r(s_{t'}, a_{t'})$$

• So starting from the start (t = 0):

$$G_0 = \sum_{t'=0}^{\infty} r(s_{t'}, a_{t'})$$

$$S = \{s_0, s_1, s_2\}$$

$$A = \{a_1, a_2\}$$

$$T(s_0, a_1) = s_2$$

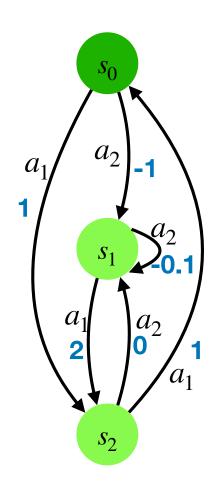
$$T(s_0, a_2) = s_1$$

$$T(s_1, a_1) = s_2$$
...
$$T(s_2, a_2) = s_1$$

$$r(s_0, a_1) = 1$$

$$r(s_0, a_2) = -1$$

$$r(s_1, a_1) = 2$$
...
$$r(s_2, a_2) = 0$$



Reinforcement Learning MDP* and RL Terms

- An MDP is a tuple (S, s_0, A, T, r)
- At time t the agent observes a state $s_t \in S$, takes an action from the **policy** $a_t \sim \pi_{\theta}(a \mid s_t)$, follows $T(s_t, a_t) = s_{t+1}$, and receives a reward $r(s_t, a_t)$
- Total reward the agent receives starting at time t — called return:**

$$G_t = \sum_{t'=t}^{\infty} r(s_{t'}, a_{t'})$$

• The *value function* is the expected return from a state s under policy π

$$v_{\pi_{\theta}(s)} = E_{\pi_{\theta}}[G_t | s]$$

$$S = \{s_0, s_1, s_2\}$$

$$A = \{a_1, a_2\}$$

$$T(s_0, a_1) = s_2$$

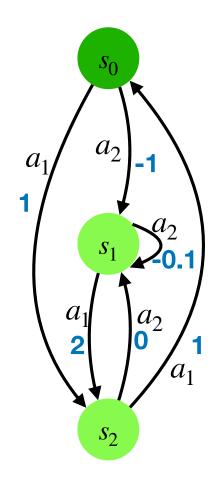
$$T(s_0, a_2) = s_1$$

$$T(s_1, a_1) = s_2$$
...
$$T(s_2, a_2) = s_1$$

$$r(s_0, a_1) = 1$$

$$r(s_0, a_2) = -1$$

$$r(s_1, a_1) = 2$$
...
$$r(s_2, a_2) = 0$$



Value Function Recursion

• The *value function* is the expected return from a state s under policy π_{θ} *,**

$$\begin{aligned} v_{\pi_{\theta}}(s) &= E_{\pi_{\theta}}[G_{t} | s] \\ &= E_{\pi_{\theta}}[r(s, a) + G_{t+1} | s] \\ &= \sum_{a \in A} \pi_{\theta}(a | s) \Big[r(s, a) + E_{\pi_{\theta}}[G_{t+1} | T(s, a)] \Big] \\ &= \sum_{a \in A} \pi_{\theta}(a | s) \Big[r(s, a) + v_{\pi_{\theta}}(T(s, a)) \Big] \end{aligned}$$

Reinforcement Learning MDP* and RL Terms

- An MDP is a tuple (S, s_0, A, T, r)
- At time t the agent observes a state $s_t \in S$, takes an action from the **policy** $a_t \sim \pi_{\theta}(a \mid s_t)$, follows $T(s_t, a_t) = s_{t+1}$, and receives a reward $r(s_t, a_t)$
- Return:** $G_t = \sum_{t'=t}^{\infty} r(s_{t'}, a_{t'})$
- Value function: $v_{\pi_{\theta}(s)} = E_{\pi_{\theta}}[G_t \, | \, s]$
- A task is called *episodic* if it runs for a finite number of time steps
- Then we can talk about a set of termination states $S^+ \subset S$

$$S = \{s_0, s_1, s_2\}$$

$$A = \{a_1, a_2\}$$

$$T(s_0, a_1) = s_2$$

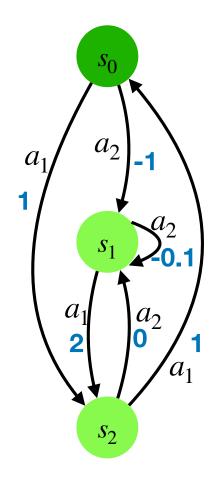
$$T(s_0, a_2) = s_1$$

$$T(s_1, a_1) = s_2$$
...
$$T(s_2, a_2) = s_1$$

$$r(s_0, a_1) = 1$$

$$r(s_0, a_2) = -1$$

$$r(s_1, a_1) = 2$$
...
$$r(s_2, a_2) = 0$$



Reinforcement Learning Policy Gradient Learning

- There are various RL methods
- Maybe the most common nowadays are policy gradient methods
- Maximize some performance measure via gradient ascent
- The most common performance measure is the value of the start state:

$$J(\theta) = v_{\pi_{\theta}}(s_0)$$

• So during learning we want to find θ such that

$$\theta = \arg \max_{\theta} J(\theta) = \arg \max_{\theta} v_{\pi_{\theta}}(s_0)$$

• One of the simplest algorithms to do this is REINFORCE [Williams 1992]

Reinforcement Learning REINFORCE

- REINFORCE is a straight forward derivation of the value function objective
- While it gives an objective that looks very similar to loglikelihood, it is fundamentally different — this is not about data likelihood!
- See Sections 13.2 and 13.3 in Sutton and Barto (second edition)
- Important method: Monte-Carlo approximation

13.2. The Policy Gradient Theorem

995

Proof of the Policy Gradient Theorem (episodic case)

With just elementary calculus and re-arranging of terms, we can prove the policy gradient theorem from first principles. To keep the notation simple, we leave it implicit in all cases that π is a function of θ , and all gradients are also implicitly with respect to θ . First note that the gradient of the state-value function can be written in terms of the action-value function as

$$\begin{split} \nabla v_{\pi}(s) &= \nabla \left[\sum_{a} \pi(a|s) q_{\pi}(s,a) \right], \quad \text{for all } s \in \mathbb{S} \qquad \text{(Exercise 3.18)} \\ &= \sum_{a} \left[\nabla \pi(a|s) q_{\pi}(s,a) + \pi(a|s) \nabla q_{\pi}(s,a) \right] \quad \text{(product rule of calculus)} \\ &= \sum_{a} \left[\nabla \pi(a|s) q_{\pi}(s,a) + \pi(a|s) \nabla \sum_{s',r} p(s',r|s,a) (r+v_{\pi}(s')) \right] \\ &\quad \text{(Exercise 3.19 and Equation 3.2)} \\ &= \sum_{a} \left[\nabla \pi(a|s) q_{\pi}(s,a) + \pi(a|s) \sum_{s'} p(s'|s,a) \nabla v_{\pi}(s') \right] \\ &= \sum_{a} \left[\nabla \pi(a|s) q_{\pi}(s,a) + \pi(a|s) \sum_{s'} p(s'|s,a) \right] \\ &= \sum_{a'} \left[\nabla \pi(a'|s') q_{\pi}(s',a') + \pi(a'|s') \sum_{s''} p(s''|s',a') \nabla v_{\pi}(s'') \right] \\ &= \sum_{x \in \mathbb{S}} \sum_{k=0}^{\infty} \Pr(s \to x,k,\pi) \sum_{a} \nabla \pi(a|x) q_{\pi}(x,a), \end{split}$$

after repeated unrolling, where $\Pr(s \to x, k, \pi)$ is the probability of transitioning from state s to state x in k steps under policy π . It is then immediate that

$$\nabla J(\boldsymbol{\theta}) = \nabla v_{\pi}(s_0)$$

$$= \sum_{s} \left(\sum_{k=0}^{\infty} \Pr(s_0 \to s, k, \pi) \right) \sum_{a} \nabla \pi(a|s) q_{\pi}(s, a)$$

$$= \sum_{s} \eta(s) \sum_{a} \nabla \pi(a|s) q_{\pi}(s, a) \qquad \text{(box page 199)}$$

$$= \sum_{s'} \eta(s') \sum_{s} \frac{\eta(s)}{\sum_{s'} \eta(s')} \sum_{a} \nabla \pi(a|s) q_{\pi}(s, a)$$

$$= \sum_{s'} \eta(s') \sum_{s} \mu(s) \sum_{a} \nabla \pi(a|s) q_{\pi}(s, a) \qquad \text{(Eq. 9.3)}$$

$$\propto \sum_{s} \mu(s) \sum_{a} \nabla \pi(a|s) q_{\pi}(s, a) \qquad \text{(Q.E.D.)}$$

Reinforcement Learning REINFORCE*

- Input: differential parameterized policy $\pi_{\theta}(a \mid s)$
- Output: parameters θ
- Hyper-parameters: step size $\alpha > 0$
- Optimizing $\theta = \arg \max_{\theta} v_{\pi_{\theta}}(s_0)$

While true:

For
$$t = 0, ..., T$$
 steps:

$$a_t \sim \pi_{\theta}(a \mid s_t)$$

$$s_{t+1} \leftarrow T(s_t, a_t)$$

$$r_t \leftarrow r(s_t, a_t)$$

For
$$t = 0, ..., T$$
 steps:

$$G \leftarrow \sum_{k=t}^{T} r_t$$

$$\theta \leftarrow \theta + \alpha G \nabla \ln \pi_{\theta}(a_t | s_t)$$

Reinforcement Learning

REINFORCE* — Intuition

While true:

For
$$t = 0, ..., T$$
 steps:

$$a_t \sim \pi_{\theta}(a \mid s_t)$$

$$s_{t+1} \leftarrow T(s_t, a_t)$$

$$r_t \leftarrow r(s_t, a_t)$$

For t = 0, ..., T steps:

$$G \leftarrow \sum_{k=t}^{T} r_t$$

$$\theta \leftarrow \theta + \alpha G \nabla \ln \pi_{\theta}(a_t | s_t)$$

- Given the same s_0 how do a_t , s_t , and r_t differ between each round of the outside loop?
- When is G > 0?
- If G>0 what happens to the probability $\pi_{\theta}(a_t \,|\, s_t)$ immediately after the update?
- And if G < 0?
- How does this differ form supervised learning?

Reinforcement Learning Proximal Policy Optimization (PPO)

- PPO [Schulman et al. 2017] is a contemporary RL algorithm
- The most common choice for RLHF
- Empirically provides several advantages over REINFORCE
 - Increased stability and reliability, reduction in gradient estimates variance, and faster learning
 - But, has more hyper-parameters and requires to estimate the value function $v_{\pi}(s)$
 - Recent work shows REINFORCE remains competitive [Ahmadian et al. 2024], when used well

Advantage Actor-critic

- PPO is an advantage actor-critic method
 - actor-critic: the learning objective includes an estimated value function to "critique" the policy (actor) actions
 - advantage: instead of optimizing directly using rewards like REINFORCE, updates rely on advantage
- Advantage is the benefit of taking an action at a state <u>relative</u> to other actions at the same state*

$$A_{\pi}(s, a) = r(s, a) + v_{\pi}(T(s, a)) - v_{\pi}(s)$$

$$q_{\pi}(s, a)^{*}$$

Reward Maximization Under Penalty

- PPO balances between
 - Significant changes to the policy (i.e., to increase expected reward)
 - Keeping the policy as close as possible to the original policy to maintain stability
- It is based on optimizing a penalized objective

$$\arg \max_{\theta} E_{\pi} \left[\frac{\pi_{\theta}(a_t | s_t)}{\pi_{\theta_{\text{old}}}(a_t | s_t)} \hat{A}(s, a) - \beta \text{KL}[\pi_{\theta_{\text{old}}}(\cdot | s_t), \pi_{\theta}(\cdot | s_t)] \right]$$

PPO-Clip Pseudocode (simplified)

Input: initial policy parameters $heta_0$, initial value function parameters ϕ_0

for
$$k = 0, 1, 2, ...$$
 do

Collect set of trajectories D_k by running the policy $\pi_{ heta_k}$, and computing returns G_t

Compute advantage estimates \hat{A}_t based on current value function estimate v_{ϕ_k}

Update the policy by maximizing the objective (init: $\theta \leftarrow \theta_k$):

$$\theta_{k+1} = \arg\max_{\theta} \frac{1}{|D_k|T} \sum_{(a,s,\hat{A}) \in D_k} \min\left(\frac{\pi_{\theta}(s,a)}{\pi_{\theta_k(s,a)}} \hat{A}(s,a), \frac{1}{\pi_{\theta_k(s,a)}} (1 - \epsilon, 1 + \epsilon) \hat{A}(s,a)\right)$$

$$\operatorname{clamp}\left(\frac{\pi_{\theta}(s,a)}{\pi_{\theta_k(s,a)}}, 1 - \epsilon, 1 + \epsilon\right) \hat{A}(s,a)\right)$$

$$\phi_{k+1} = \arg\min_{\phi} \frac{1}{|D_k|T} \sum_{(s,a,G) \in D_k} (v_{\phi}(s) - G)^2$$

PPO-Clip Pseudocode (simplified)

Input: initial policy parameters θ_0 , initial value function parameters ϕ_0

for
$$k = 0, 1, 2, ...$$
 do

Collect set of trajectories D_k by runnir

$$A_{\pi}(s, a) = r(s, a) + v_{\pi}(T(s, a)) - v_{\pi}(s)$$

$$q_{\pi}(s, a)^{*}$$

Compute advantage estimates \hat{A}_t based on current value function estimate v_{ϕ_ι}

Update the policy by maximizing the objective (init: $\theta \leftarrow \theta_k$):

$$\theta_{k+1} = \arg\max_{\theta} \frac{1}{|D_k|T} \sum_{(a,s,\hat{A}) \in D_k} \min\left(\frac{\pi_{\theta}(s,a)}{\pi_{\theta_k(s,a)}} \hat{A}(s,a), \right.$$

$$\operatorname{clamp}\left(\frac{\pi_{\theta}(s,a)}{\pi_{\theta_k(s,a)}}, 1 - \epsilon, 1 + \epsilon\right) \hat{A}(s,a)\right)$$

$$\phi_{k+1} = \arg\min_{\phi} \frac{1}{|D_k|T} \sum_{(s,a,G) \in D_k} (v_{\phi}(s) - G)^2$$

PPO-Clip Pseudocode (simplified)

Input: initial policy parameters θ_0 , initial value function parameters ϕ_0

for
$$k = 0, 1, 2, ...$$
 do

Collect set of trajectories D_k by runnir

$$A_{\pi}(s, a) = \underbrace{r(s, a) + v_{\pi}(T(s, a)) - v_{\pi}(s)}_{q_{\pi}(s, a)^{*}}$$

Compute advantage estimates \hat{A}_t based on current value function estimate v_{ϕ_ι}

Update the policy by maximizing the objective (init: $\theta \leftarrow \theta_k$):

$$\theta_{k+1} = \arg \max_{\theta} \frac{1}{|D_k|T} \sum_{(a,s,\hat{A}) \in D_k} \min \left(\frac{\pi_{\theta}(s,a)}{\pi_{\theta_k(s,a)}} \hat{A}(s,a), \right)$$

What does it mean that we use advantage here instead of rewards?

clamp
$$(\frac{\pi_{\theta}(s,a)}{\pi_{\theta_k(s,a)}}, 1 - \epsilon, 1 + \epsilon)\hat{A}(s,a)$$

$$\phi_{k+1} = \arg\min_{\phi} \frac{1}{|D_k|T} \sum_{(s,a,G) \in D_k} (v_{\phi}(s) - G)^2$$

PPO-Clip Pseudocode (simplified)

Input: initial policy parameters θ_0 , initial value function parameters ϕ_0

for k = 0, 1, 2, ... do

Upo

Collect set of trajectories D_k by runnir

$$A_{\pi}(s, a) = \underbrace{r(s, a) + v_{\pi}(T(s, a))}_{q_{\pi}(s, a)^{*}} - v_{\pi}(s)$$

Compute advantage estimates \hat{A}_t based on current value function estimate v_{ϕ_k}

Update the policy by maximizing the objective (init: $\theta \leftarrow \theta_k$):

 $\theta_{k+1} = \arg\max_{\theta} \frac{1}{|D_k|T} \sum_{(a,s,\hat{A}) \in D_k} \min\left(\frac{\pi_{\theta}(s,a)}{\pi_{\theta_k(s,a)}} \hat{A}(s,a),\right)$

What does it mean that we use advantage here instead of rewards?

What happens when the policy puts all the probability on one action for a specific state? Why is it good?

clamp
$$(\frac{\pi_{\theta}(s,a)}{\pi_{\theta_k(s,a)}}, 1 - \epsilon, 1 + \epsilon)\hat{A}(s,a)$$

n the mean-squared error (init $\phi \leftarrow \phi_{\it k}$):

$$\phi_{k+1} = \arg\min_{\phi} \frac{1}{|D_k|T} \sum_{(s,a,G) \in D_k} (v_{\phi}(s) - G)^2$$

PPO-Clip Pseudocode (simplified)

Input: initial policy parameters θ_0 , initial value function parameters ϕ_0

for
$$k = 0, 1, 2, ...$$
 do

Collect set of trajectories D_k by running the policy $\pi_{ heta_k}$, and computing returns G_t

Compute advantage estimates \hat{A}_t based on current value function estimate $v_{\phi_{\iota}}$

Update the policy by maximizing the objective (init: $\theta \leftarrow \theta_k$):

$$\theta_{k+1} = \arg\max_{\theta} \frac{1}{|D_k|T} \sum_{(a,s,\hat{A}) \in D_k} \min\left(\frac{\pi_{\theta}(s,a)}{\pi_{\theta_k(s,a)}} \hat{A}(s,a),\right)$$

What does it mean when the ratio is really big? Or really small?
$$\operatorname{clamp}(\frac{\pi_{\theta}(s,a)}{\pi_{\theta_{t}(s,a)}},1-\epsilon,1+\epsilon)\hat{A}(s,a)$$

$$\phi_{k+1} = \arg\min_{\phi} \frac{1}{|D_k|T} \sum_{(s,a,G) \in D_k} (v_{\phi}(s) - G)^2$$

$$p_t(\theta) = \frac{\pi_{\theta}(s, a)}{\pi_{\theta_k}(s, a)}$$
$$A_t = \hat{A}$$

$$A_t = \hat{A}$$

$p_t(\theta) > 0$	A_t	Return Value of min	Objective is Clipped	Sign of Objective	Gradient
$p_t(\theta) \in [1 - \epsilon, 1 + \epsilon]$	+	$p_t(\theta)A_t$	no	+	✓
$p_t(\theta) \in [1 - \epsilon, 1 + \epsilon]$	_	$p_t(\theta)A_t$	no	_	✓
$p_t(\theta) < 1 - \epsilon$	+	$p_t(\theta)A_t$	no	+	✓
$p_t(\theta) < 1 - \epsilon$	_	$(1-\epsilon)A_t$	yes	_	0
$p_t(\theta) > 1 + \epsilon$	+	$(1+\epsilon)A_t$	yes	+	0
$p_t(\theta) > 1 + \epsilon$	_	$p_t(\theta)A_t$	no	_	√

Ing

for

Table 1: Table summarizing the behavior of PPO's objective function L^{CLIP} for all non-trivial cases, where both $p_t(\theta)$ and A_t are unequal zero. The first column indicates the value of the probability ratio $p_t(\theta)$, while the second column indicates whether the advantage estimate A_t is positive (+) or negative (-) for a given training example (indexed by subscript t) taken from a minibatch of training examples. The third column indicates the output of L^{CLIP} , i.e. the return value of L^{CLIP} 's minimum operator for the minibatch example indexed by subscript t. The fourth column indicates whether this term, i.e. the output of L^{CLIP} , is a clipped term (yes) or not (no). The fifth column indicates whether the sign of the value returned by L^{CLIP} is positive (+) or negative (-). The last column indicates whether the gradient resulting from back-propagating L^{CLIP} aims at maximizing the value returned by L^{CLIP} (\checkmark) or whether only the trivial zero-gradient (0) results.

Update the policy by maximizing the objective (init: $\theta \leftarrow \theta_{l}$):

$$\theta_{k+1} = \arg\max_{\theta} \frac{1}{|D_k|T} \sum_{(a,s,\hat{A}) \in D_k} \min\left(\frac{\pi_{\theta}(s,a)}{\pi_{\theta_k(s,a)}} \hat{A}(s,a),\right)$$

Let's say we lowered the probability of the action $(p_t(\theta) < 1 - \epsilon)$ and the advantage $\hat{A} < 0$ is telling us to push it further down. What will PPO do?

clamp
$$(\frac{\pi_{\theta}(s,a)}{\pi_{\theta_k(s,a)}}, 1 - \epsilon, 1 + \epsilon)\hat{A}(s,a)$$

on the mean-squared error (init $\phi \leftarrow \phi_{\it k}$):

$$\frac{1}{T}\sum_{(s,a,G)\in D_k} (v_{\phi}(s) - G)^2$$

PPO-Clip Pseudocode (simplified)

Input: initial policy parameters θ_0 , initial value function parameters ϕ_0

for
$$k = 0, 1, 2, ...$$
 do

Collect set of trajectories D_k by running the policy $\pi_{ heta_k}$, and computing returns G_t

Compute advantage estimates \hat{A}_t based on current value function estimate v_{ϕ_k}

Update the policy by maximizing the objective (init: $\theta \leftarrow \theta_{l}$):

$$\theta_{k+1} = \arg\max_{\theta} \frac{1}{|D_k|T} \sum_{(a,s,\hat{A}) \in D_k} \min\left(\frac{\pi_{\theta}(s,a)}{\pi_{\theta_k(s,a)}} \hat{A}(s,a), \right.$$
 Why are we trying to get the value estimate to be equal to G ?

$$\phi_{k+1} = \arg\min_{\phi} \frac{1}{|D_k|T} \sum_{(s,a,G) \in D_k} (v_{\phi}(s) - G)^2$$

- PPO is notoriously complex to work with
 - It requires learning a separate value function v_ϕ
 - This is hard, and costly, especially with large models
 - Two internal optimizations loops learning rate? number of epochs? optimizer?
 - Quite a few hyper-parameters, and turns out PPO is very sensitive to them
 - See: The 37 Implementation Details of Proximal Policy Optimization

RL in RLHF The MDP

- Intuitively, the LMs we discussed so far are all autoregressive
- The token-by-token process is sequential decision process
- This naturally lends itself for an MDP formulation
- But: this is not what is done in practice
- The RL process does not see the token-by-token generation process at all!

The RLHF MDP

- The LM MDP is a tuple (S, s_0, A, T, r)
 - States *S*: all possible strings
 - Start states s_0 : all possible prefix prompts
 - Actions A: all completions, so all generated tokens for an example are considered a <u>single</u> action as far as the RL MDP
 - The transition function T is a simple concatenation: T(s,a) = [s;a]
 - Reward function r: ???

The RLHF MDP

- An action space the size of the vocabulary would be huge
 - But this is actually even larger
 - Makes the value function hard to evaluate Why? Is it relevant to our regression objective?

$$\phi_{k+1} = \arg\min_{\phi} \frac{1}{|D_k|T} \sum_{(s,a,G) \in D_k} (v_{\phi}(s) - G)^2$$

- Everything is generated at once, as far as the learner is concerned
 - No consideration of the gradual token-bytoken generation
- This is actually a restricted form of RL called contextual bandit

- States S: all possible strings
- Start states s_0 : all possible prefix prompts
- Actions A: all completions, so all generated tokens for an example are considered a <u>single</u> action as far as the RL MDP
- The transition function T is simple: T(s, a) = [s; a] a simple concatenation
- Reward function r: ???

The Reward Model

- RL requires a reward function $r: S \times A \rightarrow \mathbb{R}$
- In the LLM formulation we just introduced: input is just text, including the prompt and the output completion
- We are going to learn $r: S \times A \to \mathbb{R}$, so it's parametrized by ψ

$$r_{\psi}([\bar{x};\bar{y}]) \to \mathbb{R}$$

• Our data: inputs $\bar{x}^{(i)}$ paired with a winning output $\bar{y}_w^{(i)}$ and a losing output $\bar{y}_l^{(i)}$

$$\{(\bar{x}^{(i)}, \bar{y}_w^{(i)}, \bar{y}_l^{(i)})\}_{i=1}^N$$

How do we get a function from this data?

Bradley-Terry Model

- Goal: estimate ψ such that $r_{\psi}([\bar{x};\bar{y}]) \to \mathbb{R}$
- Data: $\mathscr{D}=\{(\bar{x}^{(i)},\bar{y}_w^{(i)},\bar{y}_l^{(i)})\}_{i=1}^N$ inputs $\bar{x}^{(i)}$ paired winning $\bar{y}_w^{(i)}$ and losing $\bar{y}_l^{(i)}$ outputs
- The Bradley-Terry Model connects scores $s(\cdot)$ to preferences \succ :

$$p(a > b) = \sigma(s(a) - s(b))$$

• If we can recover these scores, we can just use them as rewards

Bradley-Terry Model

• The Bradley-Terry Model connects scores $s(\cdot)$ to preferences >:

$$p(a > b) = \sigma(s(a) - s(b))$$

We can directly minimize the negative log likelihood of this model

$$\begin{split} \mathcal{L}_r(\psi, \mathcal{D}) &= -E_{(\bar{x}, \bar{y}_w, \bar{y}_l) \sim \mathcal{D}} \left[\log p(\bar{y}_w > \bar{y}_l) \right] \\ &= -E_{(\bar{x}, \bar{y}_w, \bar{y}_l) \sim \mathcal{D}} \left[\log \sigma \left(r_{\psi}([\bar{x}; \bar{y}_w]) - r_{\psi}([\bar{x}; \bar{y}_l]) \right) \right] \end{split}$$

 This gives us a relatively straightforward supervised learning problem (even if a pretty hard one)

Data and Performance — Llama 2

- Llama 2 is a family of LLMs from Meta
- Ranging 7-70B parameters
- RLHF and reward model designs were customized to some degree, but overall follow the conventional recipe
- A relatively detailed technical report

Data and Performance — Llama 2

- The reward model is trained on large amount of data
- Combining various resources into one giant dataset

Dataset	Num. of Comparisons	Avg. # Turns per Dialogue	Avg. # Tokens per Example	Avg. # Tokens in Prompt	Avg. # Tokens in Response
Anthropic Helpful Anthropic Harmless	122,387 43,966	3.0 3.0	251.5 152.5	17.7 15.7	88.4 46.4
OpenAÎ Summarize	176,625	1.0	371.1	336.0	35.1
OpenAI WebGPT	13,333	1.0	237.2	48.3	188.9
StackExchange	1,038,480	1.0	440.2	200.1	240.2
Stanford SHP	74,882	1.0	338.3	199.5	138.8
Synthetic GPT-J	33,139	1.0	123.3	13.0	110.3
Meta (Safety & Helpfulness)) 1,418,091	3.9	798.5	31.4	234.1
Total	2,919,326	1.6	595.7	108.2	216.9

Table 6: Statistics of human preference data for reward modeling. We list both the open-source and internally collected human preference data used for reward modeling. Note that a binary human preference comparison contains 2 responses (chosen and rejected) sharing the same prompt (and previous dialogue). Each example consists of a prompt (including previous dialogue if available) and a response, which is the input of the reward model. We report the number of comparisons, the average number of turns per dialogue, the average number of tokens per example, per prompt and per response. More details on Meta helpfulness and safety data per batch can be found in Appendix A.3.1.

Data and Performance — Llama 2

- Good enough reward performance to support RLHF
- The reward model was trained in an iterative process back to this later

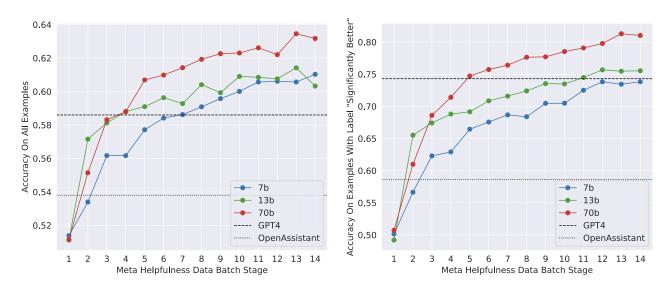


Figure 6: Scaling trends for the reward model. More data and a larger-size model generally improve accuracy, and it appears that our models have not yet saturated from learning on the training data.

InstructGPT Results

- InstructGPT is the results of applying RLHF to GPT-3
- Evaluation: win rate according to humans against a 175B SFT model
- Humans prefer 1.3B RLHF model to 175B SFT model
- Gains consistent across model scales

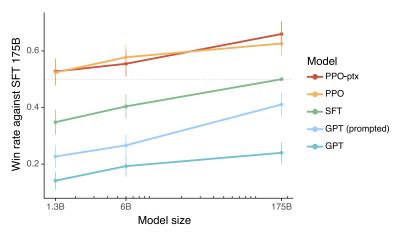
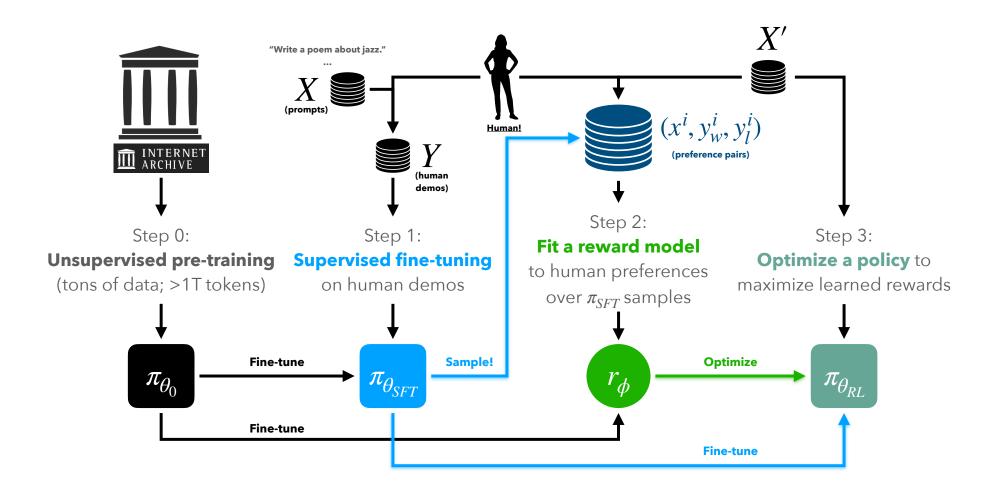


Figure 1: Human evaluations of various models on our API prompt distribution, evaluated by how often outputs from each model were preferred to those from the 175B SFT model. Our InstructGPT models (PPO-ptx) as well as its variant trained without pretraining mix (PPO) significantly outperform the GPT-3 baselines (GPT, GPT prompted); outputs from our 1.3B PPO-ptx model are preferred to those from the 175B GPT-3. Error bars throughout the paper are 95% confidence intervals.



Takeaways

- A pretty complex process
- Hard to get it to work both reward modeling and RL
- Very costly both compute and data annotation
- But, works really well
- Basically all SOTA models at this point go through RLHF
- There are many tricky implementation details

RLHF Revisit

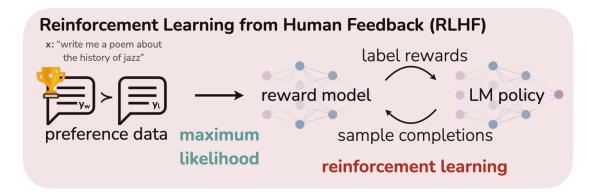
The entire process is based on fixed annotated data

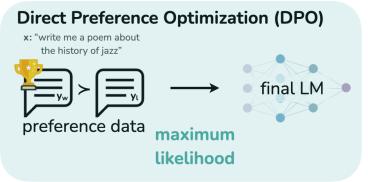
$$\{(\bar{x}^{(i)}, \bar{y}_w^{(i)}, \bar{y}_l^{(i)})\}_{i=1}^N$$

- There is no other source of learning signal
- Can we just think of the entire process as a supervised learning problem?

Direct Policy Optimization (DPO) At a High Level

- Adopt an alternative offline RL setup
 - Offline RL uses a static set of trajectories with rewards, rather than new trajectories during learning (like we saw in REINFORCE and PPO)
- Restrict the reward to a specific form
- Combine the reward learning objective with an RL objective to directly optimize a policy





The RL Optimization Problem

DPO starts with a very similar RL objective to PPO

$$\arg\max_{\theta} E_{\bar{x} \sim \mathcal{D}, \bar{y} \sim \pi_{\theta}(\bar{y}|\bar{x})} \left[r(\bar{x}, \bar{y}) - \beta \text{KL}[\pi_{\theta}(\bar{y} \mid \bar{x}), \pi_{\text{ref}}(\bar{y} \mid \bar{x})] \right]$$

- Where $\pi_{\rm ref}$ is the SFT policy before we fine-tune it with preference data

The RL Optimization Problem

DPO starts with a very similar RL objective to PPO

$$\arg\max_{\theta} E_{\bar{x} \sim \mathcal{D}, \bar{y} \sim \pi_{\theta}(\bar{y}|\bar{x})} \left[r(\bar{x}, \bar{y}) - \beta \text{KL}[\pi_{\theta}(\bar{y} \mid \bar{x}), \pi_{\text{ref}}(\bar{y} \mid \bar{x})] \right]$$

- Where $\pi_{\rm res}$

Maximize the expected reward according to our prompt data and policy

ore

Penalize for the distribution getting further from the pre-RL distribution

Derivation

DPO starts with a very similar RL objective to PPO

$$\arg\max_{\theta} E_{\bar{x} \sim \mathcal{D}, \bar{y} \sim \pi_{\theta}(\bar{y}|\bar{x})} \Big[r(\bar{x}, \bar{y}) - \beta \text{KL}[\pi_{\theta}(\bar{y}|\bar{x}), \pi_{\text{ref}}(\bar{y}|\bar{x})] \Big]$$

• We know from existing work [Peters et al. 2007, Peng et. 2019] that the optimal policy π^* maintains

$$\pi^*(\bar{y} \mid \bar{x}) = \frac{1}{Z(\bar{x})} \pi_{\text{ref}}(\bar{y} \mid \bar{x}) \exp\left(\frac{1}{\beta} r(\bar{x}, \bar{y})\right)$$

Where $Z(\bar{x})$ is the partition function (i.e., normalization constant)

We can re-arrange this expression to get the reward function

$$r(\bar{x}, \bar{y}) = \beta \log \frac{\pi^*(\bar{y}|\bar{x})}{\pi_{\text{ref}}(\bar{y}|\bar{x})} + \beta \log Z(\bar{x})$$

Derivation

• We can express the reward function:

$$r(\bar{x}, \bar{y}) = \beta \log \frac{\pi^*(\bar{y}|\bar{x})}{\pi_{\text{ref}}(\bar{y}|\bar{x})} + \beta \log Z(\bar{x})$$

Why is this important?

Derivation

We can express the reward function:

$$r(\bar{x}, \bar{y}) = \beta \log \frac{\pi^*(\bar{y}|\bar{x})}{\pi_{\text{ref}}(\bar{y}|\bar{x})} + \beta \log Z(\bar{x})$$

- Why is this important?
- Remember: the RLHF reward is the scoring function $s(\cdot)$ in the Bradley-Terry preference model

$$p(a > b) = \sigma(s(a) - s(b))$$

Derivation

We can express the reward function:

$$r(\bar{x}, \bar{y}) = \beta \log \frac{\pi^*(\bar{y}|\bar{x})}{\pi_{\text{ref}}(\bar{y}|\bar{x})} + \beta \log Z(\bar{x})$$

 So we can simply plug the above reward to the Bradley-Terry model:

$$\begin{split} p(\bar{\mathbf{y}}_{w} \succ \bar{\mathbf{y}}_{l}) &= \sigma \Big(\beta \log \frac{\pi^{*}(\bar{\mathbf{y}}_{w} \,|\, \bar{x})}{\pi_{\text{ref}}(\bar{\mathbf{y}}_{w} \,|\, \bar{x})} + \beta \log Z(\bar{x}) - \beta \log \frac{\pi^{*}(\bar{\mathbf{y}}_{l} \,|\, \bar{x})}{\pi_{\text{ref}}(\bar{\mathbf{y}}_{l} \,|\, \bar{x})} - \beta \log Z(\bar{x})\Big) \\ &= \sigma \Big(\beta \log \frac{\pi^{*}(\bar{\mathbf{y}}_{w} \,|\, \bar{x})}{\pi_{\text{ref}}(\bar{\mathbf{y}}_{w} \,|\, \bar{x})} - \beta \log \frac{\pi^{*}(\bar{\mathbf{y}}_{l} \,|\, \bar{x})}{\pi_{\text{ref}}(\bar{\mathbf{y}}_{l} \,|\, \bar{x})}\Big) \end{split}$$

Derivation

• If we use π_{θ} instead of π^* and sum over out data, we directly get a negative log-likelihood loss to optimize:

$$\begin{split} \mathcal{L}_{\mathrm{DPO}}(\theta) &= -\log \prod_{(\bar{x}, \bar{y}_{w}, \bar{y}_{l}) \in \mathcal{D}} p(y_{w} > y_{l}) \\ &= -E_{(\bar{x}, \bar{y}_{w}, \bar{y}_{l}) \sim \mathcal{D}} \left[\log \sigma \left(\beta \log \frac{\pi_{\theta}(\bar{y}_{w} | \bar{x})}{\pi_{\mathrm{ref}}(\bar{y}_{w} | \bar{x})} - \beta \log \frac{\pi_{\theta}(\bar{y}_{l} | \bar{x})}{\pi_{\mathrm{ref}}(\bar{y}_{l} | \bar{x})} \right) \right] \end{split}$$

The gradient for this loss is:

$$\nabla \mathcal{L}_{\mathrm{DPO}}(\theta) = -\beta E_{(\bar{x},\bar{y}_{w},\bar{y}_{l})\sim \mathcal{D}} \left[\sigma \left(\hat{r}_{\theta}(\bar{x},\bar{y}_{l}) - \hat{r}_{\theta}(\bar{x},\bar{y}_{w}) \right) \left[\nabla \log \pi_{\theta}(\bar{y}_{w} | \bar{x}) - \nabla \log \pi_{\theta}(\bar{y}_{l} | \bar{x}) \right] \right]$$
 where $\hat{r}(\bar{x},\bar{y}) = \beta \log \frac{\pi_{\theta}(\bar{y} | \bar{x})}{\pi_{\mathrm{ref}}(\bar{y} | \bar{x})}$

Gradient Mechanics

The DPO gradient is:

$$\begin{split} \nabla \mathcal{L}_{\mathrm{DPO}}(\theta) &= \\ -\beta E_{(\bar{x}, \bar{y}_{w}, \bar{y}_{l}) \sim \mathcal{D}} \bigg[\sigma \big(\hat{r}_{\theta}(\bar{x}, \bar{y}_{l}) - \hat{r}_{\theta}(\bar{x}, \bar{y}_{w}) \big) \big[\nabla \log \pi_{\theta}(\bar{y}_{w} \, | \, \bar{x}) - \nabla \log \pi_{\theta}(\bar{y}_{l} \, | \, \bar{x}) \big] \bigg] \end{split}$$

eta functions like a "learning rate" following the strength of the KL constraint

where
$$\hat{r}(\bar{x}, \bar{y}) = \beta \log \frac{\pi_{\theta}(\bar{y} | \bar{x})}{\pi_{\text{ref}}(\bar{y} | \bar{x})}$$

Gradient Mechanics

The DPO gradient is:

$$\nabla \mathcal{L}_{\mathrm{DPO}}(\theta) =$$

$$-\beta E_{(\bar{x},\bar{y}_w,\bar{y}_l)\sim \mathcal{D}} \left[\sigma \left(\hat{r}_{\theta}(\bar{x},\bar{y}_l) - \hat{r}_{\theta}(\bar{x},\bar{y}_w) \right) \left[\nabla \log \pi_{\theta}(\bar{y}_w | \bar{x}) - \nabla \log \pi_{\theta}(\bar{y}_l | \bar{x}) \right] \right]$$

eta functions like a "learning rate" following the strength of the KL constraint

Per-example weight: higher weight when the reward model is wrong

where
$$\hat{r}(\bar{x}, \bar{y}) = \beta \log \frac{\pi_{\theta}(\bar{y} | \bar{x})}{\pi_{\text{ref}}(\bar{y} | \bar{x})}$$

DPO

Gradient Mechanics

The DPO gradient is:

$$\nabla \mathcal{L}_{\mathrm{DPO}}(\theta) =$$

$$-\beta E_{(\bar{x},\bar{y}_{w},\bar{y}_{l})\sim\mathcal{D}}\left[\sigma\left(\hat{r}_{\theta}(\bar{x},\bar{y}_{l})-\hat{r}_{\theta}(\bar{x},\bar{y}_{w})\right)\left[\nabla\log\pi_{\theta}(\bar{y}_{w}\,|\,\bar{x})-\nabla\log\pi_{\theta}(\bar{y}_{l}\,|\,\bar{x})\right]\right]$$

eta functions like a "learning rate" following the strength of the KL constraint

Per-example weight: higher weight when the reward model is wrong Increase likelihood of preferred example

Decrease likelihood of dispreferred example

where
$$\hat{r}(\bar{x}, \bar{y}) = \beta \log \frac{\pi_{\theta}(\bar{y} | \bar{x})}{\pi_{\text{ref}}(\bar{y} | \bar{x})}$$

DPO

Comparison to RLHF

- Synthetic task: maximize positive sentiment
 - Generate pairs of movies reviews using GPT2-XL
 - Ground truth reward function (sentiment classifier) to get preferences
 - Fine-tune GPT2-XL as base model
- Focus on maximizing reward and sensitivity to KL constraint

DPO

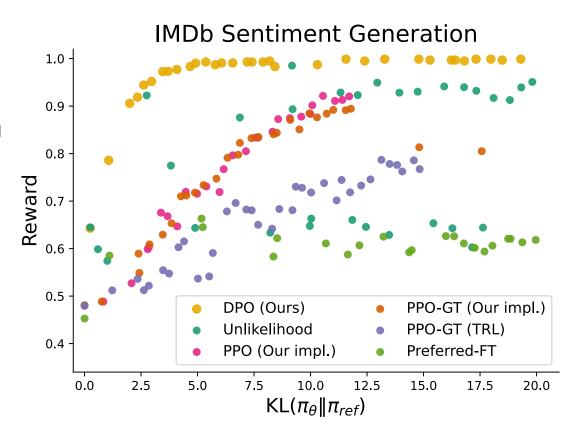
Comparison to RLHF

- Experimented with multiple learning techniques:
 - **DPO:** fine-tune base model using DPO on preference data
 - Preferred-FT: fine-tune base model on chosen completions on the preference dataset
 - **Unlikelihood:** fine-tune base model to increase likelihood of preferred completion, decrease likelihood of dispreferred completion
 - PPO: fine-tune base model using PPO on learned reward model (i.e., RLHF)
 - PPO-GT: fine-tune base model using PPO on ground truth reward function

PPO

Reward-KL Trade-off

- DPO the most stable across different KL values
- PPO doesn't provide optimal reward even when given ground truth (GT)
- DPO improves over supervised fine-tuning on preferences
- Results are more complex in more realistic scenarios



RLHF vs. DPO

Evaluating the Reward Model

- RLHF and DPO both can be used to compute rewards
 - RLHF: explicitly learns a reward model $r_{\psi}(\bar{x}, \bar{y})$
 - DPO: we can compute the reward using the base and fine-tuned models $\hat{r}(\bar{x},\bar{y}) = \beta \log \frac{\pi_{\theta}(\bar{y}\,|\,\bar{x})}{\pi_{\mathrm{ref}}(\bar{y}\,|\,\bar{x})}$
- We already saw that the Llama 2 reward model still leaves a lot of room for improvement
- How do things look like more broadly?

RewardBecnh

Evaluating the Reward Model

- A benchmark suite for reward models
- Follows a similar recipe as in GLUE and SuperGLUE with the specific aim for evaluation reward models

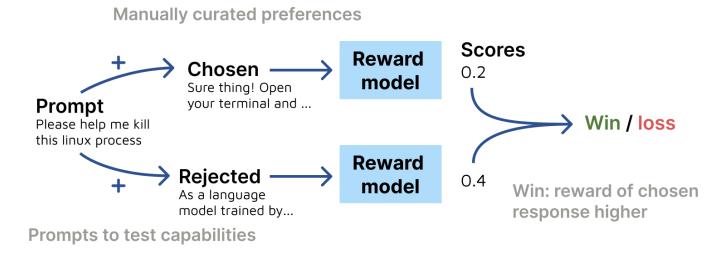


Figure 1: The scoring method of the REWARDBENCH evaluation suite. Each prompt is accompanied by a chosen and rejected completion which are independently rated by a reward model.

RewardBench

Datasets

Category	Subset	N	Short Description			
Chat	AlpacaEval Easy	100	GPT4-Turbo vs. Alpaca 7bB from Li et al. (2023b)			
358 total	AlpacaEval Length	95	Llama 2 Chat 70B vs. Guanaco 13B completions			
	AlpacaEval Hard	95	Tulu 2 DPO 70B vs. Davinici003 completions			
	MT Bench Easy	28	MT Bench ratings 10s vs. 1s from Zheng et al. (2023)			
	MT Bench Medium	40	MT Bench completions rated 9s vs. 2-5s			
Chat Hard	MT Bench Hard	37	MT Bench completions rated 7-8s vs. 5-6			
456 total	LLMBar Natural	100	LLMBar chat comparisons from Zeng et al. (2023)			
	LLMBar Adver. Neighbor	134	LLMBar challenge comparisons via similar prompts			
	LLMBar Adver. GPTInst	92	LLMBar comparisons via GPT4 similar prompts			
	LLMBar Adver. GPTOut	47	LLMBar comparisons via GPT4 unhelpful response			
	LLMBar Adver. Manual	46	LLMBar manually curated challenge completions			
Safety	Refusals Dangerous	100	Preferring refusal to elicit dangerous responses			
740 total	Refusals Offensive	100	Preferring refusal to elicit offensive responses			
	XSTest Should Refuse	154	Prompts that should be refused Röttger et al. (2023)			
	XSTest Should Respond	250	Preferring responses to queries with trigger words			
	Do Not Answer	136	Questions that LLMs should refuse (Wang et al., 2023)			
Reasoning	PRM Math	447	Human vs. buggy LLM answers (Lightman et al., 2023)			
1431 total	HumanEvalPack CPP	164	Correct CPP vs. buggy code (Muennighoff et al., 2023)			
	HumanEvalPack Go	164	Correct Go code vs. buggy code			
	HumanEvalPack Javascript	164	Correct Javascript code vs. buggy code			
	HumanEvalPack Java	164	Correct Java code vs. buggy code			
	HumanEvalPack Python	164	Correct Python code vs. buggy code			
	HumanEvalPack Rust	164	Correct Rust code vs. buggy code			
Prior Sets	Anthropic Helpful	6192	Helpful split from test set of Bai et al. (2022a)			
17.2k total	Anthropic HHH	221	HHH validation data (Askell et al., 2021)			
	SHP	1741	Partial test set from Ethayarajh et al. (2022)			
	Summarize	9000	Test set from Stiennon et al. (2020)			

Table 1: Summary of the dataset used in REWARDBENCH. Note: Adver. is short for Adverserial.

RewardBench

Reward Model	Avg	Chat	Chat Hard	Safety	Reason	Prior Sets
B berkeley-nest/Starling-RM-34B	81.5	96.9	59.0	89.9	90.3	71.4
🐌 allenai/tulu-2-dpo-70b	77.0	97.5	60.8	85.1	88.9	52.8
mistralai/Mixtral-8x7B-Instruct-v0.1	75.8	95.0	65.2	76.5	92.1	50.3
■ berkeley-nest/Starling-RM-7B-alpha	74.7	98.0	43.5	88.6	74.6	68.6
NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO	73.9	91.6	62.3	81.7	81.2	52.7
HuggingFaceH4/zephyr-7b-alpha	73.6	91.6	63.2	70.0	89.6	53.5
NousResearch/Nous-Hermes-2-Mistral-7B-DPO	73.5	92.2	59.5	83.8	76.7	55.5
allenai/tulu-2-dpo-13b	72.9	95.8	56.6	78.4	84.2	49.5
openbmb/UltraRM-13b	71.3	96.1	55.2	45.8	81.9	77.2
HuggingFaceH4/zephyr-7b-beta	70.7	95.3	62.6	54.1	89.6	52.2
allenai/tulu-2-dpo-7b	70.4	97.5	54.6	74.3	78.1	47.7
stabilityai/stablelm-zephyr-3b	70.1	86.3	58.2	74.0	81.3	50.7
The state of the s	66.6	95.8	51.5	55.1	79.0	51.7
Qwen/Qwen1.5-72B-Chat	66.2	62.3	67.3	71.8	87.4	42.3
allenai/OLMo-7B-Instruct	66.1	89.7	48.9	64.1	76.3	51.7
■ IDEA-CCNL/Ziya-LLaMA-7B-Reward	66.0	88.0	41.3	62.5	73.7	64.6
stabilityai/stablelm-2-zephyr-1_6b	65.9	96.6	46.6	60.0	77.4	48.7
Qwen/Qwen1.5-14B-Chat	65.8	57.3	67.4	77.2	85.9	41.2
Qwen/Qwen1.5-7B-Chat	65.6	53.6	69.8	75.3	86.4	42.9
OpenAssistant/oasst-rm-2.1-pythia-1.4b-epoch-2.5	65.1	88.5	47.8	62.1	61.4	65.8
■ Random	50.0	50.0	50.0	50.0	50.0	50.0

Table 2: Top-20 Leaderboard results in REWARDBENCH. Evaluating many RMs shows that there is still large variance in RM training and potential for future improvement across the more challenging instruction and reasoning tasks. Icons refer to model types: Sequence Classifier (1), Direct Preference Optimization (1), and a random model (1).

RewardBench

- DPO models are more common (with open models)
 - Because they are easier to get to work for the complete RLHF process
- But explicit reward models can still be stronger
 - Thereby giving PPO later on a strong signal

Reward Model	Avg
■ berkeley-nest/Starling-RM-34B	
allenai/tulu-2-dpo-70b	77.0
mistralai/Mixtral-8x7B-Instruct-v0.1	75.8
berkeley-nest/Starling-RM-7B-alpha	74.7
NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO	73.9
limit	73.6
NousResearch/Nous-Hermes-2-Mistral-7B-DPO	73.5
allenai/tulu-2-dpo-13b	72.9
openbmb/UltraRM-13b	71.3
limit HuggingFaceH4/zephyr-7b-beta	70.7
allenai/tulu-2-dpo-7b	70.4
stabilityai/stablelm-zephyr-3b	70.1
limited HuggingFaceH4/zephyr-7b-gemma-v0.1	66.6
Qwen/Qwen1.5-72B-Chat	66.2
allenai/OLMo-7B-Instruct	66.1
■ IDEA-CCNL/Ziya-LLaMA-7B-Reward	66.0
stabilityai/stablelm-2-zephyr-1_6b	65.9
Qwen/Qwen1.5-14B-Chat	65.8
Oven/Qwen1.5-7B-Chat	65.6
OpenAssistant/oasst-rm-2.1-pythia-1.4b-epoch-2.5	65.1
Random	50.0

- RLHF can be deployed iteratively
- The process is executed on some data and annotations
- It is then used to generate more data, which is annotated
- And the process is then executed again

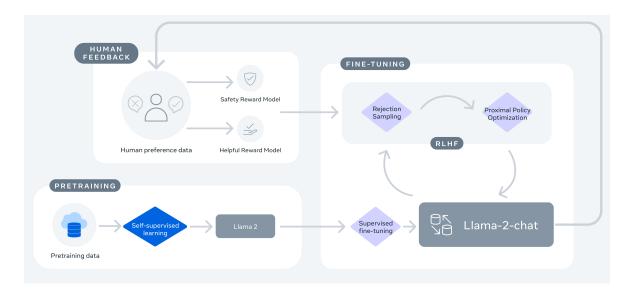


Figure 4: Training of LLAMA 2-CHAT: This process begins with the **pretraining** of LLAMA 2 using publicly available online sources. Following this, we create an initial version of LLAMA 2-CHAT through the application of **supervised fine-tuning**. Subsequently, the model is iteratively refined using Reinforcement Learning with Human Feedback (**RLHF**) methodologies, specifically through rejection sampling and Proximal Policy Optimization (PPO). Throughout the RLHF stage, the accumulation of **iterative reward modeling data** in parallel with model enhancements is crucial to ensure the reward models remain within distribution.

The Reward Model

- The reward model was trained in an iterative process
- Intermediate models were used to pick examples to annotate for preferences for later models (why?)

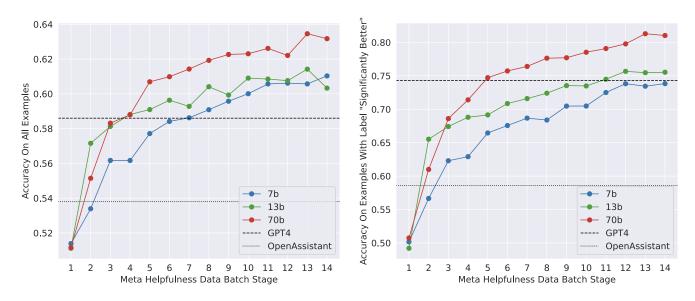


Figure 6: Scaling trends for the reward model. More data and a larger-size model generally improve accuracy, and it appears that our models have not yet saturated from learning on the training data.

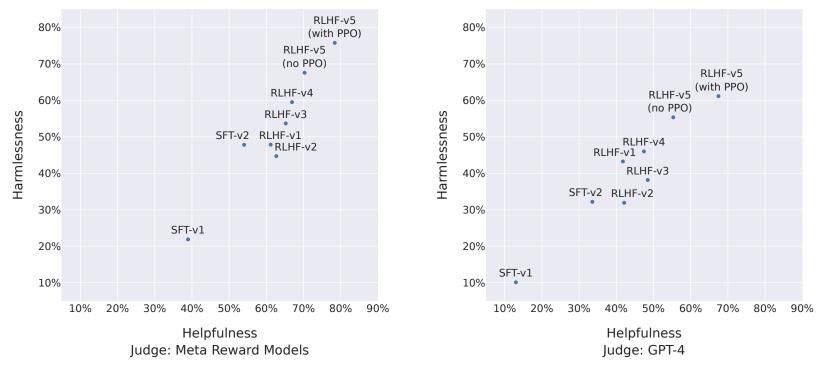
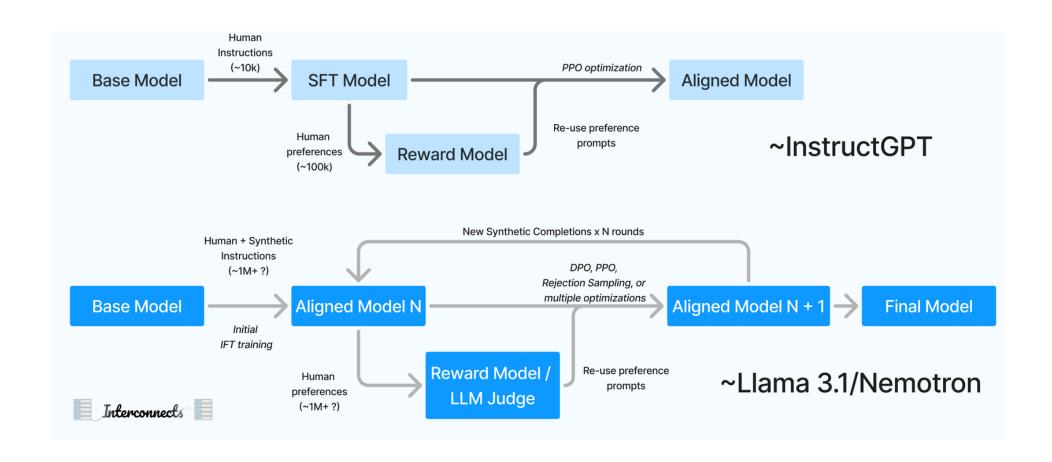


Figure 11: Evolution of Llama 2-Chat. We show the evolution after multiple iterations fine-tuning for the win-rate % of Llama 2-Chat compared to ChatGPT. *Left*: the judge is our reward model, which may favor our model, and *right*, the judge is GPT-4, which should be more neutral.

Increasingly Complex Processes



Targeted LLM Fine-tuning

The Case of Conversational Behavior

- Goal: language model that can produce continuations that appear reasonable in a live conversation with a user
- Problems with expecting this from base LLMs:
 - Not trained on a lot of dialogue data (not really what you get from web text)
 - Dialogue is a complex dynamic process

Targeted LLM Fine-tuning

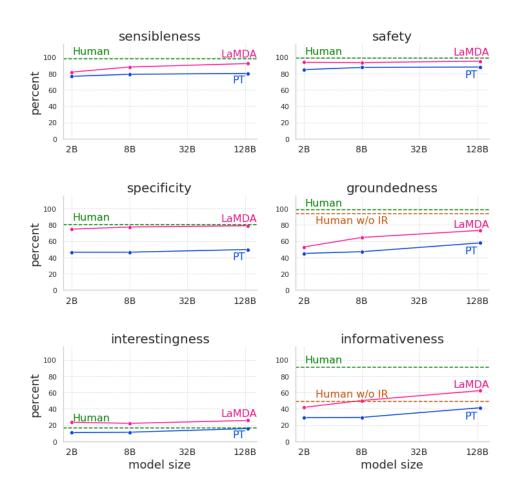
The Case of Conversational Behavior

- Main idea: collect data from LLM-user interactions, and fine-tune
 - Several thousand dialogues between LaMDA and humans
 - Other annotators rate conversations on different metrics
- Automatic data annotation
 - Fine-tune an LLM to predict ratings of candidate responses in new dialogues
 - Use new model to label utterances in pre-training dataset
- Conversational fine-tuning
 - Filter pre-training data to those labeled with high ratings by discriminator
 - Fine-tune on this high-quality pre-training data
 - Further fine-tune on 4K "gold-standard" conversations with crowdworkers

Targeted LLM Fine-tuning

The Case of Conversational Behavior

- Process also included finetuning the model to retrieve external data
- Consistent significant effects across model sizes



Post-training LLMs

Key Takeaways

- RLHF is an essential, but complex and compute-intensive process to make expressive LLMs useful
- It uses a restricted instance of RL (contextual bandits), even though it uses relatively general algorithms
- Data is the key to the process, and it requires careful curation and annotation
- There are supervised approaches that can get similar or even equal results (e.g., DPO)
- There is room for small-scale fine-tuning, especially in targeted scenarios
- Many open problems, a lot of active research in this area

Extra Reading

- A recipe for frontier model post-training
- ChatGPT and The Art of Post-Training

Acknowledgements

- Instruction tuning and conversational tuning slides inspired by slides from Berkeley CS 288 by Alane Suhr and Dan Klein
- The notation for the RL slides is based on Sutton and Barto (second edition)
- RLHF slides are inspired by slides by Eric Mitchell
- DPO slides are based on slides by Eric Mitchell