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• The model is composed of two 
components


• Bidirectional encoder to 
process the input


• Autoregressive decoder to 
generate output


• Training is usually done with 
loss on the output


- Propagates into the decoder 
and through it to the encoder
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Figure 1: The Transformer - model architecture.

The Transformer follows this overall architecture using stacked self-attention and point-wise, fully
connected layers for both the encoder and decoder, shown in the left and right halves of Figure 1,
respectively.

3.1 Encoder and Decoder Stacks

Encoder: The encoder is composed of a stack of N = 6 identical layers. Each layer has two
sub-layers. The first is a multi-head self-attention mechanism, and the second is a simple, position-
wise fully connected feed-forward network. We employ a residual connection [11] around each of
the two sub-layers, followed by layer normalization [1]. That is, the output of each sub-layer is
LayerNorm(x + Sublayer(x)), where Sublayer(x) is the function implemented by the sub-layer
itself. To facilitate these residual connections, all sub-layers in the model, as well as the embedding
layers, produce outputs of dimension dmodel = 512.

Decoder: The decoder is also composed of a stack of N = 6 identical layers. In addition to the two
sub-layers in each encoder layer, the decoder inserts a third sub-layer, which performs multi-head
attention over the output of the encoder stack. Similar to the encoder, we employ residual connections
around each of the sub-layers, followed by layer normalization. We also modify the self-attention
sub-layer in the decoder stack to prevent positions from attending to subsequent positions. This
masking, combined with fact that the output embeddings are offset by one position, ensures that the
predictions for position i can depend only on the known outputs at positions less than i.

3.2 Attention

An attention function can be described as mapping a query and a set of key-value pairs to an output,
where the query, keys, values, and output are all vectors. The output is computed as a weighted sum
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• An encoder-decoder (sequence-to-sequence) pre-trained model


• Extends the BERT approach to encoder-decoder

The BART Recipe
Encoder-decoder Pre-training
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• Encoder-only Transformer


• Trained on raw data


• Two self-supervised objects:


- Masked LM


- Next-sentence prediction


• Transformed the NLP task landscape — if you have enough data, 
fine-tuned BERT works really well

BERT Reminder
BART
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• How does the BERT learning approach adapts to an encoder-
decoder architecture? 


- Output is generated by decoder, and the loss is on the output


- Input is a sequence of tokens

BART

7
[Lewis et al. 2019]

https://arxiv.org/abs/1910.13461


• Corrupt the input following five different recipes





• Try to recover the pre-corrupted input by generating it using the decoder


• Train on a lot of raw text data, just like with BERT


• How to compute the loss? Loss can be computed using “teacher 
forcing”
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Figure 2: Transformations for noising the input that we experiment with. These transformations can be composed.

Text Infilling A number of text spans are sampled,
with span lengths drawn from a Poisson distribution
(� = 3). Each span is replaced with a single [MASK]
token. 0-length spans correspond to the insertion of
[MASK] tokens. Text infilling is inspired by Span-
BERT (Joshi et al., 2019), but SpanBERT samples
span lengths from a different (clamped geometric) dis-
tribution, and replaces each span with a sequence of
[MASK] tokens of exactly the same length. Text infill-
ing teaches the model to predict how many tokens are
missing from a span.

Sentence Permutation A document is divided into
sentences based on full stops, and these sentences are
shuffled in a random order.

Document Rotation A token is chosen uniformly at
random, and the document is rotated so that it begins
with that token. This task trains the model to identify
the start of the document.

3 Fine-tuning BART

The representations produced by BART can be used in
several ways for downstream applications.

3.1 Sequence Classification Tasks

For sequence classification tasks, the same input is fed
into the encoder and decoder, and the final hidden state
of the final decoder token is fed into new multi-class
linear classifier. This approach is related to the CLS
token in BERT; however we add the additional token
to the end so that representation for the token in the
decoder can attend to decoder states from the complete
input (Figure 3a).

3.2 Token Classification Tasks

For token classification tasks, such as answer endpoint
classification for SQuAD, we feed the complete doc-
ument into the encoder and decoder, and use the top
hidden state of the decoder as a representation for each
word. This representation is used to classify the token.

3.3 Sequence Generation Tasks

Because BART has an autoregressive decoder, it can be
directly fine tuned for sequence generation tasks such
as abstractive question answering and summarization.
In both of these tasks, information is copied from the

input but manipulated, which is closely related to the
denoising pre-training objective. Here, the encoder in-
put is the input sequence, and the decoder generates
outputs autoregressively.

3.4 Machine Translation

We also explore using BART to improve machine trans-
lation decoders for translating into English. Previous
work Edunov et al. (2019) has shown that models can
be improved by incorporating pre-trained encoders, but
gains from using pre-trained language models in de-
coders have been limited. We show that it is possible
to use the entire BART model (both encoder and de-
coder) as a single pretrained decoder for machine trans-
lation, by adding a new set of encoder parameters that
are learned from bitext (see Figure 3b).

More precisely, we replace BART’s encoder embed-
ding layer with a new randomly initialized encoder.
The model is trained end-to-end, which trains the new
encoder to map foreign words into an input that BART
can de-noise to English. The new encoder can use a
separate vocabulary from the original BART model.

We train the source encoder in two steps, in both
cases backpropagating the cross-entropy loss from the
output of the BART model. In the first step, we freeze
most of BART parameters and only update the ran-
domly initialized source encoder, the BART positional
embeddings, and the self-attention input projection ma-
trix of BART’s encoder first layer. In the second step,
we train all model parameters for a small number of
iterations.

4 Comparing Pre-training Objectives

BART supports a much wider range of noising schemes
during pre-training than previous work. We compare a
range of options using base-size models (6 encoder and
6 decoder layers, with a hidden size of 768), evaluated
on a representative subset of the tasks we will consider
for the full large scale experiments in §5.

4.1 Comparison Objectives

While many pre-training objectives have been pro-
posed, fair comparisons between these have been dif-
ficult to perform, at least in part due to differences in
training data, training resources, architectural differ-
ences between models, and fine-tuning procedures. We

Denoising Self-supervised Objective
BART
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• BERT: a pre-trained encoder


• BART: pre-trained decoder and encoder


- Can use both


- Or can use only the decoder wherever we would use BERT

What Do We Get?
BART
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• Similar to BERT: fine-tune for the end task


• Very natural for summarization 


- Because input and output vocabulary are the same


• How can we use for classification


• What about machine translation? 

How to Use? 
BART
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• The input is given the encoder


• The same input is forced decoded in the decoder via “teacher forcing”


• The representation from the final decoder hidden state is given to a 
classification head

Classification
BART
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label

A  B  C  D  E <s> A  B  C  D  E
(a) To use BART for classification problems, the same
input is fed into the encoder and decoder, and the repre-
sentation from the final output is used.

(b) For machine translation, we learn a small additional
encoder that replaces the word embeddings in BART. The
new encoder can use a disjoint vocabulary.

Figure 3: Fine tuning BART for classification and translation.

re-implement strong pre-training approaches recently
proposed for discriminative and generation tasks. We
aim, as much as possible, to control for differences un-
related to the pre-training objective. However, we do
make minor changes to the learning rate and usage of
layer normalisation in order to improve performance
(tuning these separately for each objective). For refer-
ence, we compare our implementations with published
numbers from BERT, which was also trained for 1M
steps on a combination of books and Wikipedia data.
We compare the following approaches:

Language Model Similarly to GPT (Radford et al.,
2018), we train a left-to-right Transformer language
model. This model is equivalent to the BART decoder,
without cross-attention.

Permuted Language Model Based on XLNet (Yang
et al., 2019), we sample 1/6 of the tokens, and gener-
ate them in a random order autoregressively. For con-
sistency with other models, we do not implement the
relative positional embeddings or attention across seg-
ments from XLNet.

Masked Language Model Following BERT (Devlin
et al., 2019), we replace 15% of tokens with [MASK]
symbols, and train the model to independently predict
the original tokens.

Multitask Masked Language Model As in UniLM
(Dong et al., 2019), we train a Masked Language
Model with additional self-attention masks. Self at-
tention masks are chosen randomly in with the follow
proportions: 1/6 left-to-right, 1/6 right-to-left, 1/3 un-
masked, and 1/3 with the first 50% of tokens unmasked
and a left-to-right mask for the remainder.

Masked Seq-to-Seq Inspired by MASS (Song et al.,
2019), we mask a span containing 50% of tokens,
and train a sequence to sequence model to predict the
masked tokens.

For the Permuted LM, Masked LM and Multitask
Masked LM, we use two-stream attention (Yang et al.,
2019) to efficiently compute likelihoods of the output
part of the sequence (using a diagonal self-attention
mask on the output to predict words left-to-right).

We experiment with (1) treating the task as a stan-
dard sequence-to-sequence problem, where the source
input to the encoder and the target is the decoder out-
put, or (2) adding the source as prefix to the target in
the decoder, with a loss only on the target part of the
sequence. We find the former works better for BART
models, and the latter for other models.

To most directly compare our models on their ability
to model their fine-tuning objective (the log likelihood
of the human text), we report perplexity in Table 1.

4.2 Tasks

SQuAD (Rajpurkar et al., 2016)a an extractive ques-
tion answering task on Wikipedia paragraphs. Answers
are text spans extracted from a given document context.
Similar to BERT (Devlin et al., 2019), we use concate-
nated question and context as input to the encoder of
BART, and additionally pass them to the decoder. The
model includes classifiers to predict the start and end
indices of each token.

MNLI (Williams et al., 2017), a bitext classification
task to predict whether one sentence entails another.
The fine-tuned model concatenates the two sentences
with appended an EOS token, and passes them to both
the BART encoder and decoder. In contrast to BERT,
the representation of the EOS token is used to classify
the sentences relations.

ELI5 (Fan et al., 2019), a long-form abstractive ques-
tion answering dataset. Models generate answers con-
ditioned on the concatenation of a question and sup-
porting documents.

XSum (Narayan et al., 2018), a news summarization
dataset with highly abstractive summaries.

ConvAI2 (Dinan et al., 2019), a dialogue response
generation task, conditioned on context and a persona.

CNN/DM (Hermann et al., 2015), a news summa-
rization dataset. Summaries here are typically closely
related to source sentences.

4.3 Results

Results are shown in Table 1. Several trends are clear:

https://arxiv.org/abs/1910.13461


• In MT, the input and output vocabularies are different


• When is that a problem with BART?


• How can we solve it?

Machine Translation
BART
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• In MT, the input and output vocabularies are different


• When is that a problem with BART?


• How can we solve it?


• Add a small pre-encoder encoder to replace the BART input embeddings with computed 
embeddings 

Machine Translation
BART
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• Can do anything that BERT does


• But can also do generation tasks (e.g., summarization)

Performance
BART
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Model SQuAD 1.1 MNLI ELI5 XSum ConvAI2 CNN/DM

F1 Acc PPL PPL PPL PPL

BERT Base (Devlin et al., 2019) 88.5 84.3 - - - -

Masked Language Model 90.0 83.5 24.77 7.87 12.59 7.06
Masked Seq2seq 87.0 82.1 23.40 6.80 11.43 6.19
Language Model 76.7 80.1 21.40 7.00 11.51 6.56
Permuted Language Model 89.1 83.7 24.03 7.69 12.23 6.96
Multitask Masked Language Model 89.2 82.4 23.73 7.50 12.39 6.74

BART Base
w/ Token Masking 90.4 84.1 25.05 7.08 11.73 6.10
w/ Token Deletion 90.4 84.1 24.61 6.90 11.46 5.87
w/ Text Infilling 90.8 84.0 24.26 6.61 11.05 5.83
w/ Document Rotation 77.2 75.3 53.69 17.14 19.87 10.59
w/ Sentence Shuffling 85.4 81.5 41.87 10.93 16.67 7.89
w/ Text Infilling + Sentence Shuffling 90.8 83.8 24.17 6.62 11.12 5.41

Table 1: Comparison of pre-training objectives. All models are of comparable size and are trained for 1M steps
on a combination of books and Wikipedia data. Entries in the bottom two blocks are trained on identical data
using the same code-base, and fine-tuned with the same procedures. Entries in the second block are inspired by
pre-training objectives proposed in previous work, but have been simplified to focus on evaluation objectives (see
§4.1). Performance varies considerably across tasks, but the BART models with text infilling demonstrate the most
consistently strong performance.

Performance of pre-training methods varies signifi-

cantly across tasks The effectiveness of pre-training
methods is highly dependent on the task. For exam-
ple, a simple language model achieves the best ELI5
performance, but the worst SQUAD results.

Token masking is crucial Pre-training objectives
based on rotating documents or permuting sentences
perform poorly in isolation. The successful methods
either use token deletion or masking, or self-attention
masks. Deletion appears to outperform masking on
generation tasks.

Left-to-right pre-training improves generation

The Masked Language Model and the Permuted
Language Model perform less well than others on
generation, and are the only models we consider that
do not include left-to-right auto-regressive language
modelling during pre-training.

Bidirectional encoders are crucial for SQuAD As
noted in previous work (Devlin et al., 2019), just
left-to-right decoder performs poorly on SQuAD, be-
cause future context is crucial in classification deci-
sions. However, BART achieves similar performance
with only half the number of bidirectional layers.

The pre-training objective is not the only important

factor Our Permuted Language Model performs less
well than XLNet (Yang et al., 2019). Some of this dif-
ference is likely due to not including other architectural
improvements, such as relative-position embeddings or
segment-level recurrence.

Pure language models perform best on ELI5 The
ELI5 dataset is an outlier, with much higher perplex-
ities than other tasks, and is the only generation task
where other models outperform BART. A pure lan-
guage model performs best, suggesting that BART is
less effective when the output is only loosely con-
strained by the input.

BART achieves the most consistently strong perfor-

mance. With the exception of ELI5, BART models
using text-infilling perform well on all tasks.

5 Large-scale Pre-training Experiments

Recent work has shown that downstream performance
can dramatically improve when pre-training is scaled
to large batch sizes (Yang et al., 2019; Liu et al., 2019)
and corpora. To test how well BART performs in this
regime, and to create a useful model for downstream
tasks, we trained BART using the same scale as the
RoBERTa model.

5.1 Experimental Setup

We pre-train a large model with 12 layers in each of the
encoder and decoder, and a hidden size of 1024. Fol-
lowing RoBERTa (Liu et al., 2019), we use a batch size
of 8000, and train the model for 500000 steps. Docu-
ments are tokenized with the same byte-pair encoding
as GPT-2 (Radford et al., 2019). Based on the results in
Section §4, we use a combination of text infilling and
sentence permutation. We mask 30% of tokens in each
document, and permute all sentences. Although sen-
tence permutation only shows significant additive gains
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consistently strong performance.

Performance of pre-training methods varies signifi-

cantly across tasks The effectiveness of pre-training
methods is highly dependent on the task. For exam-
ple, a simple language model achieves the best ELI5
performance, but the worst SQUAD results.

Token masking is crucial Pre-training objectives
based on rotating documents or permuting sentences
perform poorly in isolation. The successful methods
either use token deletion or masking, or self-attention
masks. Deletion appears to outperform masking on
generation tasks.

Left-to-right pre-training improves generation

The Masked Language Model and the Permuted
Language Model perform less well than others on
generation, and are the only models we consider that
do not include left-to-right auto-regressive language
modelling during pre-training.

Bidirectional encoders are crucial for SQuAD As
noted in previous work (Devlin et al., 2019), just
left-to-right decoder performs poorly on SQuAD, be-
cause future context is crucial in classification deci-
sions. However, BART achieves similar performance
with only half the number of bidirectional layers.

The pre-training objective is not the only important

factor Our Permuted Language Model performs less
well than XLNet (Yang et al., 2019). Some of this dif-
ference is likely due to not including other architectural
improvements, such as relative-position embeddings or
segment-level recurrence.

Pure language models perform best on ELI5 The
ELI5 dataset is an outlier, with much higher perplex-
ities than other tasks, and is the only generation task
where other models outperform BART. A pure lan-
guage model performs best, suggesting that BART is
less effective when the output is only loosely con-
strained by the input.

BART achieves the most consistently strong perfor-

mance. With the exception of ELI5, BART models
using text-infilling perform well on all tasks.

5 Large-scale Pre-training Experiments

Recent work has shown that downstream performance
can dramatically improve when pre-training is scaled
to large batch sizes (Yang et al., 2019; Liu et al., 2019)
and corpora. To test how well BART performs in this
regime, and to create a useful model for downstream
tasks, we trained BART using the same scale as the
RoBERTa model.

5.1 Experimental Setup

We pre-train a large model with 12 layers in each of the
encoder and decoder, and a hidden size of 1024. Fol-
lowing RoBERTa (Liu et al., 2019), we use a batch size
of 8000, and train the model for 500000 steps. Docu-
ments are tokenized with the same byte-pair encoding
as GPT-2 (Radford et al., 2019). Based on the results in
Section §4, we use a combination of text infilling and
sentence permutation. We mask 30% of tokens in each
document, and permute all sentences. Although sen-
tence permutation only shows significant additive gains
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Exploring the Limits of Transfer Learning

"translate English to German: That is good."

"cola sentence: The 
course is jumping well."

"summarize: state authorities 
dispatched emergency crews tuesday to 
survey the damage after an onslaught 
of severe weather in mississippi…"

"stsb sentence1: The rhino grazed 
on the grass. sentence2: A rhino 

is grazing in a field."
T5

"Das ist gut."

"not acceptable"

"six people hospitalized after 
a storm in attala county."

"3.8"

Figure 1: A diagram of our text-to-text framework. Every task we consider—including
translation, question answering, and classification—is cast as feeding our model
text as input and training it to generate some target text. This allows us to use the
same model, loss function, hyperparameters, etc. across our diverse set of tasks. It
also provides a standard testbed for the methods included in our empirical survey.
“T5” refers to our model, which we dub the “Text-to-Text Transfer Transformer”.

summarization, and sentiment classification, to name a few. With this unified approach,
we can compare the e�ectiveness of di�erent transfer learning objectives, unlabeled data
sets, and other factors, while exploring the limits of transfer learning for NLP by scaling up
models and data sets beyond what has previously been considered.

We emphasize that our goal is not to propose new methods but instead to provide a
comprehensive perspective on where the field stands. As such, our work primarily comprises
a survey, exploration, and empirical comparison of existing techniques. We also explore the
limits of current approaches by scaling up the insights from our systematic study (training
models up to 11 billion parameters) to obtain state-of-the-art results in many of the tasks
we consider. In order to perform experiments at this scale, we introduce the “Colossal Clean
Crawled Corpus” (C4), a data set consisting of hundreds of gigabytes of clean English text
scraped from the web. Recognizing that the main utility of transfer learning is the possibility
of leveraging pre-trained models in data-scarce settings, we release our code, data sets, and
pre-trained models.1

The remainder of the paper is structured as follows: In the following section, we discuss
our base model and its implementation, our procedure for formulating every text processing
problem as a text-to-text task, and the suite of tasks we consider. In Section 3, we present a
large set of experiments that explore the field of transfer learning for NLP. At the end of the
section (Section 3.7), we combine insights from our systematic study to obtain state-of-the-art
results on a wide variety of benchmarks. Finally, we provide a summary of our results and
wrap up with a look towards the future in Section 4.

3
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Exploring the Limits of Transfer Learning

<X> <Y>

<X> <Y> <Z>

Figure 2: Schematic of the objective we use in our baseline model. In this example, we
process the sentence “Thank you for inviting me to your party last week.” The
words “for”, “inviting” and “last” (marked with an ◊) are randomly chosen for
corruption. Each consecutive span of corrupted tokens is replaced by a sentinel
token (shown as <X> and <Y>) that is unique over the example. Since “for” and
“inviting” occur consecutively, they are replaced by a single sentinel <X>. The
output sequence then consists of the dropped-out spans, delimited by the sentinel
tokens used to replace them in the input plus a final sentinel token <Z>.

useful in downstream tasks. Preliminary work that applied the transfer learning paradigm
of pre-training and fine-tuning all of the model’s parameters to NLP problems used a
causal language modeling objective for pre-training (Dai and Le, 2015; Peters et al., 2018;
Radford et al., 2018; Howard and Ruder, 2018). However, it has recently been shown that
“denoising” objectives (Devlin et al., 2018; Taylor, 1953) (also called “masked language
modeling”) produce better performance and as a result they have quickly become standard.
In a denoising objective, the model is trained to predict missing or otherwise corrupted
tokens in the input. Inspired by BERT’s “masked language modeling” objective and the
“word dropout” regularization technique (Bowman et al., 2015), we design an objective that
randomly samples and then drops out 15% of tokens in the input sequence. All consecutive
spans of dropped-out tokens are replaced by a single sentinel token. Each sentinel token
is assigned a token ID that is unique to the sequence. The sentinel IDs are special tokens
which are added to our vocabulary and do not correspond to any wordpiece. The target
then corresponds to all of the dropped-out spans of tokens, delimited by the same sentinel
tokens used in the input sequence plus a final sentinel token to mark the end of the target
sequence. Our choices to mask consecutive spans of tokens and only predict dropped-out
tokens were made to reduce the computational cost of pre-training. We perform thorough
investigation into pre-training objectives in Section 3.3. An example of the transformation
resulting from applying this objective is shown in Figure 2. We empirically compare this
objective to many other variants in Section 3.3.

3.1.5 Baseline Performance

In this section, we present results using the baseline experimental procedure described above
to get a sense of what kind of performance to expect on our suite of downstream tasks.
Ideally, we would repeat every experiment in our study multiple times to get a confidence
interval on our results. Unfortunately, this would be prohibitively expensive due to the large
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Raffel, Shazeer, Roberts, Lee, Narang, Matena, Zhou, Li and Liu

Number of tokens Repeats GLUE CNNDM SQuAD SGLUE EnDe EnFr EnRo

FFull data set 0 83.28 19.24 80.88 71.36 26.98 39.82 27.65
2

29
64 82.87 19.19 80.97 72.03 26.83 39.74 27.63

2
27

256 82.62 19.20 79.78 69.97 27.02 39.71 27.33

2
25

1,024 79.55 18.57 76.27 64.76 26.38 39.56 26.80

2
23

4,096 76.34 18.33 70.92 59.29 26.37 38.84 25.81

Table 9: Measuring the e�ect of repeating data during pre-training. In these experiments,
we only use the first N tokens from C4 (with varying values of N shown in the
first column) but still pre-train over 235 tokens. This results in the data set being
repeated over the course of pre-training (with the number of repeats for each
experiment shown in the second column), which may result in memorization (see
Figure 6).

To test the e�ect of limited unlabeled data set sizes, we pre-trained our baseline model
on artificially truncated versions of C4. Recall that we pre-train our baseline model on
235 ¥ 34B tokens (a small fraction of the total size of C4). We consider training on truncated
variants of C4 consisting of 229, 227, 225 and 223 tokens. These sizes correspond to repeating
the data set 64, 256, 1,024, and 4,096 times respectively over the course of pre-training.

The resulting downstream performance is shown in Table 9. As expected, performance
degrades as the data set size shrinks. We suspect this may be due to the fact that the model
begins to memorize the pre-training data set. To measure if this is true, we plot the training
loss for each of these data set sizes in Figure 6. Indeed, the model attains significantly
smaller training losses as the size of the pre-training data set shrinks, suggesting possible
memorization. Baevski et al. (2019) similarly observed that truncating the pre-training data
set size can degrade downstream task performance.

We note that these e�ects are limited when the pre-training data set is repeated only
64 times. This suggests that some amount of repetition of pre-training data might not be
harmful. However, given that additional pre-training can be beneficial (as we will show in
Section 3.6) and that obtaining additional unlabeled data is cheap and easy, we suggest
using large pre-training data sets whenever possible. We also note that this e�ect may be
more pronounced for larger model sizes, i.e. a bigger model may be more prone to overfitting
to a smaller pre-training data set.

3.5 Training Strategy

So far we have considered the setting where all parameters of a model are pre-trained on
an unsupervised task before being fine-tuned on individual supervised tasks. While this
approach is straightforward, various alternative methods for training the model on down-
stream/supervised tasks have been proposed. In this section, we compare di�erent schemes
for fine-tuning the model in addition to the approach of training the model simultaneously
on multiple tasks.
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• BART and T5 are very useful for all sorts of sequence-to-
sequence tasks with language


- T5 comes in different sizes


- There are various customization (e.g., CodeT5)


• Extended the generalizations conclusions from BERT, and 
demonstrated the impact of data scale

Takeaways
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