(g (nﬂ“
4 354

:vl’: (’"J “'(Q'“:, s
(dz\u s) (Ov/

zmi.)c) (os,"- =
) feas

Raw Data

Masked Language
Models and BERT

Cornell CS 5740: Natural Language Processing
Yoav Artzi, Spring 2023

Masked LMs

* LMs so far: predict the next token given the previous tokens

This enables a self-supervised task

That we can train on a lot of data

And get really interesting and useful representations

Masked LMs

* LMs so far: predict the next token given the previous tokens
 What if we have a complete sentence?

- Can do the same

Masked LMs

* LMs so far: predict the next token given the previous tokens
 What if we have a complete sentence?

- Can do the same

- Decode through an LM to compute representations

- But: representations conditioned on past context only

- So: missing an opportunity here to incorporate future context

 How can we formulate a self-supervised prediction task?

Masked LMs

- We have many sequence of tokens X = (x, ..., X,)

- Just raw data, like with regular LMs

» Let’s create a prediction task by hiding part of the sequence, and then
trying to predict them

- Input: the sequence ¥ where some tokens are replaced with the token
[IMASK], for example: " = (x5 .., X4, [MASK], x¢, ..., x,)

- Output: a probability distribution over tokens for each masked position
such that the correct token gets the highest probability, for example

arg max p(xé” | ¥ = X7
a

- Training objective: negative log-likelihood for masked tokens

5

Masked LMs

Virtual Assistant

T !

Masked Language Modeling Causal Language Modeling

Pt T et T

| am a MASK Assistant | am a Virtual MASK

6
Image from https://www.holisticai.com/blog/from-transformer-architecture-to-prompt-engineering

Encoder Transformer

* So far: Transformers self-attend to past tokens to predict the
next token

e This is called a Decoder Transformer

 Encoders assume we have the complete sequence

* There is no generation problem, we just want representations
- We will learn how to use them later on

* The big difference: self-attention is not masked, so computes
weighted sum over entire context (i.e., entire sequence)

The Transformer

Decoder-only Variant (revisit)

Output
Probafbilities
| Softmax |}
)
{ Linear |}
TransformerBlockX(u R | P X =¢x)+ ¢ (i
(u,) i =) + ¢,00) (=)
q¥ = Wy, h! = TransformerBlock'(x,, ..., X; Feod
Forward
KO = W]((l)[ul 20 1 B hl.2 = TransformerBlock?(hl, ..., hil) or\;vt —
VO = W(l)[ul---u-] [Add & Norm J—~
Y : Masked X K
z = LN([SelfAttn(q", KD, vy ... h! = TransformerBlock*(hf~!, ..., h¥™) Multi-Head
Attention
SelfAttn(q®, K©, V)] + u)) S)
I
h! = LN(W/GELU(W’z + b") + b” + z) h¥ = TransformerBlock®(h¥~1, ..., h~1) \ J
o @ Positional
P&y [x5 ..., x;) = softmax(W* h;) Encoding
Output
i . : : _ Embeddi
Self-attention reminder During learning, compute the whole = eT -
SelfAttn(Q. K. V) ftmax(QK/x/Z)V sequence at ones by masking items o
n 9 9 =) H
- softmax(QK/\/AIV. |\ | shouldn't attend to in softmax — Shito ot
easy by setting softmax to — oo

i [Vaswani et al. 2017]

Encoder Transformer*

Output
Probabilities
| Softmax |}
|
{ Linear |}
. k _ M N
TransformerBlock*(u, ..., u,) X; = Q")+ @ i),i=1,...n f[N h\
Q" =W'u,-u,] [h{---h}] = TransformerBlock!(x, ..., x,) Feed
Forward
KO =Wu,--u,] [h2---h2] = TransformerBlock(hl, ..., h} T
VO = Wy, ---u,] ([Add & Norm J«~
i " Multi-Head X K
Z = LN([SelfAttn(Q, KD, v(Dy: ... [h’f ---hﬁ] = TransformerBlockk(hlf_l, ces hlg_]) Attention
SelfAttn(QY, KD, V)] + [u;---u,]) . —)
[h%--hf] = LN(W'GELU(W'Z + b") + b" + Z) [h%..-hX] = TransformerBlock™(h{~*, ..., h5™! Positional
@ !
p(x;|xM, .. xM) = softmax(W” h¥) Encoding
Output
Embedding
Self-attention reminder
Outputs
SelfAttn(Q, K, V) = softmax(QK/4/d,)V (shifted right)

* for Masked LM 9

[Vaswani et al. 2017]

BERT

Bidirectional Encoder Representations from Transformers

* Encoder transformer

« BERT Base: 12 transformer blocks, 768-dim word-piece tokens,
12 self-attention heads — 110M parameters

 BERT Large: 24 transformer blocks, 1024-dim word-piece
tokens, 16 self-attention heads — 340M parameters

 RoBERTa: same model, much more data (160GB of data instead
of 16GB)

10
[Devlin et al. 2018]

BERT

Inputs

e One or two sentences

- Word-piece token embeddings

- Position and segment embeddings

Input [CLS] ’ my dog is ‘ cute ’ [SEP] he ‘ likes H play H ##ing ’ [SEP]

Token

Embeddings E[CLS] Emy Edog Eis cute E[SEP] Ehe likes Eplay E##ing E[SEP]
= = e = L = = e = = =

Segment

Embeddings EA EA EA EA EA EA EB EB EB EB EB
L L == L = L L = L L L

Position

Embeddings E0 E1 E2 E3 E4 E5 E6 E7 E8 E9 Elo

11

[figure from Devlin et al. 2018]

BERT

Word-piece Tokenization (in a nutshell)

1. Initialize with tokens for all characters
2. While vocabulary size is below the target size:

1. Build a language model over the corpus (e.g., unigram language
model)

2. Merge pieces that lead to highest improvement in language model
perplexity

* Need to choose a language model that will make the process tractable
» Often a unigram language model (e.g., SentencePiece library)

* Particularly suitable for machine translation

12
[Schuster and Nakajima (2012), Wu et al. (2016), Kudo and Richardson (2018)]

BERT

Training

e Data: raw text
* Two objectives:
- Masked LM
- Next-sentence prediction
» |Later development in RoBERTa:

- More data, no next-sentence prediction, dynamic masking

13

BERT

Masking Recipe for Training

 Mask and predict 15% of the tokens

- For 80% (of 15%) replace with the input token with [MASK]
- For 10%, replace with a random token

- For 10%, keep the same

14

BERT

Next-sentence Prediction

Input: [CLS] Text chunk 1 [SEP] Text chunk 2

Training data: 50% of the time, take the true next chunk of text,
50% of the time take a random other chunk

Predict whether the next chunk is the true next chunk

Prediction is done on the [CLS] output representation

15

BERT

Related Techniques

* Central Word Prediction Objective (context2vec) [Melamud et al.
2016]

 Machine Translation Objective (CoVe) [McMann et al. 2017]

e Bi-directional Language Modeling Objective (ELMo) [Peters et al.
2018]

e Then BERT came ...

... and many more followed

16

https://www.aclweb.org/anthology/K16-1006
https://www.aclweb.org/anthology/K16-1006
https://www.aclweb.org/anthology/K16-1006
https://www.aclweb.org/anthology/K16-1006
https://arxiv.org/abs/1708.00107
https://arxiv.org/abs/1802.05365
https://arxiv.org/abs/1802.05365
https://arxiv.org/abs/1802.05365
https://arxiv.org/abs/1802.05365

BERT

What Do We Get?

 We can feed complete sentences to BERT
* For each token, we get a contextualized representation

- Meaning: computed taking the other tokens in the sentence
iInto acocunt

* In contrast to word2vec representations that fixed and do not
depend on context

* While word2vec vectors are forced to mix multiple senses, BERT
can provide more instance-specific vectors

17

BERT

How Do We Use It?

» Widely supported by existing frameworks
- E.g., Transformers library by Hugging Face
 We will soon see how to use it when working with annotated data

e Large BERT models quickly outperformed human performance
on several NLP tasks

- But what it meant beyond benchmarking was less clear

e Started an arms race towards bigger and bigger models, which
quickly led to the LLMs of today

18

BERT

What It Is Not Great For?

 BERT cannot generate text (at least not in an obvious way)

- Not an autoregressive model, can do weird things like stick a
[MASK]at the end of a string, fill in the mask, and repeat

 Masked language models are intended to be used primarily for
“analysis” tasks

19

BERT

What does BERT Learn?

 There is a lot of work trying to decipher what BERT learns in its
representations

- Much harder with recent LLMs because they are not as open

 Some very interesting results, but not completely clear how to
iInterpret them

20

What Does BERT Learn?

e Try to solve different linguistic
tasks given each block level,

without fine-tuning i : token index

K : number of block levels

- Specifically: solve tasks using 7 : task
mixing weights on levels y, - task parameter
. . : mixin rameter

 Goal: see what information each 4 g parameters

new level adds s, = softmax(a,)

K

* Each task classifier takes a h;, = yTZ s¥hf

single mixed hidden =0

representation h; _ or a pair of
representations for two tokens

21
[Tenney et al. 2019]

What Does BERT Learn?

e Each plot shows a task
 Plots show s]f. weights

magnitude in blue, and the
number of self-attention levels

* The performance delta when
adding this layer is in purple

e Largely: higher level semantic
tasks happen in later levels

22

POS
|

SPR Coref. SRL Entities Deps. Consts.

Relations

K(A) = 1.60 K(s) = 0.19

=

K(A) = 1.57 K(s) = 0.83
~afjunl=———--
——L 1 _|—| | P

(= e

K(A)=1.15 K(s) =0.87

K(a) = 1.61 K(s) = 0.06
P e e e e e O O o o

l_‘_l_| |_|v—-—-*n_l_h|_|_| =y —
m — K@)=1.31 K(s) = 0.46

L K(A)=O?6 TT K(s) I_'D5(|l_‘
N) A s M e 1 e AR

—

K(A) = 0.33 K(s) = 0.01
— A Y O O O

e oo o b e o

| -

K(A) = 0.50 K(s) = 0.01
B) N (Y I (O O

I_L_!I_I_lTI_L—l_‘I_VI_f—I_L_J_I_ll_IH

0 24 6 8 10 12 14 16 18 20 22 24

[figure from Tenney et al. (2019)]

Acknowledgements

We thank the following sources for the materials on which slides on
this deck are based:

e UT Austin CS 388 by Greg Durrett

23

