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• Language models do next word prediction


• At first look, next-word-completion seems like a very simple task


• Why does it make sense to focus on it so much?

Next-word Prediction
Scaling Up

2



Why Does it Make Sense?
Scaling Up
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I put ____ fork down on the table



Why Does it Make Sense?
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The woman walked across the street, checking 
for traffic over ___ shoulder
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I went to the ocean to see the fish, turtles, 
seals, and ____
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Overall, the value I got from the two hours 
watching it was the sum total of the popcorn 

and the drink. The movie was _____
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Iroh went into the kitchen to make some tea. 
Standing next to Iroh, Zuko pondered his 

destiny. Zuko left the ____
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I was thinking about the sequence that goes 1, 
1, 2, 3, 5, 8, 13, 21, ______
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Cornell Tech is located in _____, New York



• I put ____ fork down on the table [syntax]


• The woman walked across the street, checking for traffic over ___ shoulder 
[coreference]


• I went to the ocean to see the fish, turtles, seals, and ____ [lexical semantics / 
topics]


• Overall, the value I got from the two hours watching it was the sum total of the 
popcorn and the drink. The movie was _____ [sentiment]


• I was thinking about the sequence that goes 1, 1, 2, 3, 5, 8, 13, 21, ______ 
[reasoning]


• Cornell Tech is located in _____, New York [knowledge]


The learned representations have to account for a lot to succeed in this 
seemingly straightforward task

Why Does it Make Sense?
Scaling Up
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• Transformer LM released in 2018 by OpenAI


• Decoder with 12 transformer blocks, 117M parameters, 768-dimensional 
hidden states, 3072-dimensional feed-forward hidden layers; BPE with 40k 
merges


• Trained on BookCorpus: over 7,000 unique book: long spans of contiguous 
text for learning long-distance dependencies 


• Impressive results when fine-tuned on several NLP tasks:  Entailment, textual 
similarity, multiple choice questions


• GPT? Actually not specified in the paper ¯\_(ツ)_/¯ 


- Generative PreTraining


- Generative Pretrained Transformers

GPT [Radford et al. 2018]
Some History: the GPTs
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https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf


• GPT-2 scaled the models to 1.5B parameters


• Increasingly convincing generations


• Impressive zero-shot results on several tasks

GPT-2 [Radford et al. 2018]
Some History: the GPTs
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Language Models are Unsupervised Multitask Learners

LAMBADA LAMBADA CBT-CN CBT-NE WikiText2 PTB enwik8 text8 WikiText103 1BW
(PPL) (ACC) (ACC) (ACC) (PPL) (PPL) (BPB) (BPC) (PPL) (PPL)

SOTA 99.8 59.23 85.7 82.3 39.14 46.54 0.99 1.08 18.3 21.8

117M 35.13 45.99 87.65 83.4 29.41 65.85 1.16 1.17 37.50 75.20
345M 15.60 55.48 92.35 87.1 22.76 47.33 1.01 1.06 26.37 55.72
762M 10.87 60.12 93.45 88.0 19.93 40.31 0.97 1.02 22.05 44.575
1542M 8.63 63.24 93.30 89.05 18.34 35.76 0.93 0.98 17.48 42.16

Table 3. Zero-shot results on many datasets. No training or fine-tuning was performed for any of these results. PTB and WikiText-2
results are from (Gong et al., 2018). CBT results are from (Bajgar et al., 2016). LAMBADA accuracy result is from (Hoang et al., 2018)
and LAMBADA perplexity result is from (Grave et al., 2016). Other results are from (Dai et al., 2019).

<UNK> which is extremely rare in WebText - occurring
only 26 times in 40 billion bytes. We report our main re-
sults in Table 3 using invertible de-tokenizers which remove
as many of these tokenization / pre-processing artifacts as
possible. Since these de-tokenizers are invertible, we can
still calculate the log probability of a dataset and they can
be thought of as a simple form of domain adaptation. We
observe gains of 2.5 to 5 perplexity for GPT-2 with these
de-tokenizers.

WebText LMs transfer well across domains and datasets,
improving the state of the art on 7 out of the 8 datasets in a
zero-shot setting. Large improvements are noticed on small
datasets such as Penn Treebank and WikiText-2 which have
only 1 to 2 million training tokens. Large improvements
are also noticed on datasets created to measure long-term
dependencies like LAMBADA (Paperno et al., 2016) and
the Children’s Book Test (Hill et al., 2015). Our model is
still significantly worse than prior work on the One Billion
Word Benchmark (Chelba et al., 2013). This is likely due
to a combination of it being both the largest dataset and
having some of the most destructive pre-processing - 1BW’s
sentence level shuffling removes all long-range structure.

3.2. Children’s Book Test

Figure 2. Performance on the Children’s Book Test as a function of
model capacity. Human performance are from Bajgar et al. (2016),
instead of the much lower estimates from the original paper.

The Children’s Book Test (CBT) (Hill et al., 2015) was
created to examine the performance of LMs on different cat-
egories of words: named entities, nouns, verbs, and preposi-
tions. Rather than reporting perplexity as an evaluation met-
ric, CBT reports accuracy on an automatically constructed
cloze test where the task is to predict which of 10 possible
choices for an omitted word is correct. Following the LM
approach introduced in the original paper, we compute the
probability of each choice and the rest of the sentence con-
ditioned on this choice according to the LM, and predict
the one with the highest probability. As seen in Figure 2
performance steadily improves as model size is increased
and closes the majority of the gap to human performance
on this test. Data overlap analysis showed one of the CBT
test set books, The Jungle Book by Rudyard Kipling, is in
WebText, so we report results on the validation set which
has no significant overlap. GPT-2 achieves new state of the
art results of 93.3% on common nouns and 89.1% on named
entities. A de-tokenizer was applied to remove PTB style
tokenization artifacts from CBT.

3.3. LAMBADA

The LAMBADA dataset (Paperno et al., 2016) tests the
ability of systems to model long-range dependencies in
text. The task is to predict the final word of sentences
which require at least 50 tokens of context for a human to
successfully predict. GPT-2 improves the state of the art
from 99.8 (Grave et al., 2016) to 8.6 perplexity and increases
the accuracy of LMs on this test from 19% (Dehghani et al.,
2018) to 52.66%. Investigating GPT-2’s errors showed most
predictions are valid continuations of the sentence, but are
not valid final words. This suggests that the LM is not
using the additional useful constraint that the word must be
the final of the sentence. Adding a stop-word filter as an
approximation to this further increases accuracy to 63.24%,
improving the overall state of the art on this task by 4%. The
previous state of the art (Hoang et al., 2018) used a different
restricted prediction setting where the outputs of the model
were constrained to only words that appeared in the context.
For GPT-2, this restriction is harmful rather than helpful

https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf


• GPT-3 scaled the model size to 175B parameters 


• So far, two ways of interaction with models:


- Sample from the distribution (generation)


- Fine-tune on a specific task


• GPT-3 demonstrated few-shot learning without parameter 
updates — In-context Learning (ICL) 

- In-context examples seem to specify the task, allowing the model 
to complete it on a new input


- More on this later on …  

GPT-3 [Brown et al. 2020]
Some History: the GPTs
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https://arxiv.org/abs/2005.14165


• Two dimensions of scaling up:


- Data: the number of raw tokens the learner is given


- Parameters: the number of parameters in the model


• All this requires scaling up compute 

- Storage (memory, disk space, etc), GPUs, networking

Scaling Up
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Data
Scaling Up
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https://babylm.github.io/



• How do we get text data at scale?


• Scrape whatever we can get from the web


- Seed webcrawler with initial URLs


- Identify new URLs via outlinks


- Download HTML pages, extract raw text, postprocess text


• Done? Not really …


- The Internet is a mess


- What would you do next?

Data
Scaling Up
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• Deduplication 


• Remove junk — what is junk?


- One option: text that is very unlikely according to simple n-gram model


• Remove pages that are not interesting


- One option: few inlinks → not interesting


• Remove non-English data a language classifier


• Remove stuff your model probably is better of without: personally 
identifiable information, adult content, hate speech, copyrighted data, 
NLP benchmarks (why?)

Web Scraping: Filtering Heuristics
Data

17



• Personally identifiable information


- But what about the phone numbers of public companies? 


• Adult content and hate speech


- Very culturally dependent 


• Copyrighted data


- How to identify? Is it fair use?

Web Scraping: Filtering Tradeoffs
Data

18



Composition: the Pile
Data

19Figure 1: Treemap of Pile components by effective size.

troduce a new filtered subset of Common Crawl,
Pile-CC, with improved extraction quality.

Through our analyses, we confirm that the Pile is
significantly distinct from pure Common Crawl
data. Additionally, our evaluations show that the
existing GPT-2 and GPT-3 models perform poorly
on many components of the Pile, and that models
trained on the Pile significantly outperform both
raw and filtered Common Crawl models. To com-
plement the performance evaluations, we also per-
form an exploratory analysis of the text within the
Pile to provide a detailed picture of the data. We
hope that our extensive documentation of the con-
struction and characteristics of the Pile will help
researchers make informed decisions about poten-
tial downstream applications.

Finally, we make publicly available the preprocess-
ing code for the constituent datasets of the Pile and
the code for constructing alternative versions2. In
the interest of reproducibility, we also document
all processing performed on each dataset (and the
Pile as a whole) in as much detail as possible. For
further details about the processing of each dataset,
see Section 2 and Appendix C.

2
https://github.com/EleutherAI/

the-pile

1.1 Contributions
The core contributions of this paper are:

1. The introduction of a 825.18 GiB english-
language dataset for language modeling com-
bining 22 diverse sources.

2. The introduction of 14 new language model-
ing datasets, which we expect to be of inde-
pendent interest to researchers.

3. Evaluations demonstrating significant im-
provements across many domains by GPT-2-
sized models trained on this new dataset, com-
pared to training on CC-100 and raw Common
Crawl.

4. The investigation and documentation of this
dataset, which we hope will better inform re-
searchers about how to use it as well as moti-
vate them to undertake similar investigations
of their own data.

2 The Pile Datasets

The Pile is composed of 22 constituent sub-datasets,
as shown in Table 1. Following Brown et al. (2020),
we increase the weights of higher quality compo-
nents, with certain high-quality datasets such as
Wikipedia being seen up to 3 times (“epochs”) for

2

[Gao et al. 2020]



Large Raw Text Corpora
Data
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Table 2: Summary statistics of the corpora, along with the models trained on them. Models noted
with * signifies the model was not trained exactly on the version we consider, either due to some
filtering, using additional data, or the original data being private.

Dataset Origin Model Size (GB) # Documents # Tokens max(# Tokens) min(# Tokens)
OpenWebText Gokaslan & Cohen (2019) GPT-2* (Radford et al., 2019) 41.2 8,005,939 7,767,705,349 95,139 128
C4 Raffel et al. (2020) T5 (Raffel et al., 2020) 838.7 364,868,892 153,607,833,664 101,898 5
mC4-en Chung et al. (2023) umT5 (Chung et al., 2023) 14,694.0 3,928,733,374 2,703,077,876,916 181,949 1
OSCAR Abadji et al. (2022) BLOOM* (Scao et al., 2022) 3,327.3 431,584,362 475,992,028,559 1,048,409 1
The Pile Gao et al. (2020) GPT-J/Neo & Pythia (Biderman et al., 2023) 1,369.0 210,607,728 285,794,281,816 28,121,329 0
RedPajama Together Computer (2023) LLaMA* (Touvron et al., 2023) 5,602.0 930,453,833 1,023,865,191,958 28,121,329 0
S2ORC Lo et al. (2020) SciBERT* (Beltagy et al., 2019) 692.7 11,241,499 59,863,121,791 376,681 1
peS2o Soldaini & Lo (2023) - 504.3 8,242,162 44,024,690,229 97,043 154
LAION-2B-en Schuhmann et al. (2022) Stable Diffusion* (Rombach et al., 2022) 570.2 2,319,907,827 29,643,340,153 131,077 0
The Stack Kocetkov et al. (2023) StarCoder* (Li et al., 2023) 7,830.8 544,750,672 1,525,618,728,620 26,298,134 0

Compressed Counts The compressed counts approach is designed for cases where the number
of possible values is intractable. For instance, the total 10-grams in a large corpus can be very high,
and the memory usage to compute all of them would be overwhelming. Similarly, finding duplicates
would require keeping and comparing the strings of all documents in memory. In the case of C4,
that would require over 800 GB of RAM. Instead, we apply a compression function (e.g., hashing,
Bloom, 1970) to those values, reducing memory footprint while sacrificing some accuracy (due to
hash collisions). For example, when finding the most common 10-grams, we store a table of counts
where the keys in the table correspond to hashes of 10-grams. The hash table size is configurable
according to the amount of memory available. The larger the hash table, the smaller the probability of
hash collisions and, therefore, the higher the accuracy of the counts. There is also a tradeoff between
the number of possible entries and the accuracy of the counts per a fixed memory (hash table size).
E.g., unigram estimates are more accurate than 10-gram estimates since the number of possible values
is much smaller.

3.2 SEARCHING

The second part of WIMBD allows fast text retrieval using an inverted index. For instance, we can
get the number of documents mentioning a word or sequence (document frequency). It also allows
more complex Boolean queries. While search and retrieval have numerous implementations, such as
reverse indices, suffix arrays, suffix trees for exact match search, and dense retrieval for fuzzy search,
in this work, we use Elasticsearch (www.elastic.co) to index corpora. We build an API on top of
the original Elasticsearch functions, allowing tailored and customized searches to fit our analysis
requirements. We leave it to future work to explore other search alternatives.

4 WIMBD: THE ANALYSES

This section presents analyses conducted in WIMBD, grouped by category. First, we describe the
ten corpora considered in this study (§4.1). We then consider four high-level categories, each split
into several analyses: data statistics (§4.2), data quality (§4.3), and community- and society-relevant
measurements (§4.4). Cross-corpus analyses, as well as elaborations and more analyses are presented
in the appendix (§B). Our analyses are inspired by previous works (Dodge et al., 2021; Gao et al.,
2020), but we expand them to multiple corpora, and open-source our modular toolkit to encourage
researchers to scrutinize their corpora. We offer the first extensive analyses on ten, combining
extension of previous analyses and several novel ones.

4.1 CORPORA

We cover ten different large corpora, spanning across text-only (e.g., C4 to image captions (LAION-
2B-en) and code (The Stack). These corpora have been used in training language models (or similar
large-scale models, such as Stable Diffusion Rombach et al. 2022). A high-level description of these
datasets using WIMBD is presented in Table 2, and further details about the construction and origin of
these corpora are detailed in Appendix A.
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Figure 2: Domain distributions of the ten most common domains per token for C4, LAION-2B-en,
and RedPajama. The results for the other corpora are discussed and presented in Appendix B.1.1

4.2 DATA STATISTICS

Main Findings

• Four out of the ten corpora we consider have ‘empty’ documents (meaning they contain
only space-like characters), while The Pile and RedPajama contain the same longest document
(with over 28 million tokens) of an encyclopedia.
• While the most common source of webpages in C4 originate from www.nytimes.com,

it consists of less than 0.05% of the total web pages, mC4-en most common domain is
google.com (over 5% of the documents), and cdn.shopify.com contributes almost 6% to
the total documents in LAION.

4.2.1 SUMMARY STATISTICS

We begin by computing some summary statistics and present the results in Table 2. Using the
Exact Counts we compute the following high-level statistics of a corpus: (1) size, (2) number of

documents, (3) number of tokens,1 (4) the size of the longest document, and (5) the size of the
shortest document. Out of all corpora, mC4-en is the largest, which takes 14.7TB of disk, and 2.7
trillion tokens. After that comes The Stack with a size of 7.8TB, and more than 1.5 trillion tokens.
Interestingly, four corpora contain documents with empty strings: LAION-2B-en (81 total), which
typically contain a sequence of white spaces. In The Stack (1,350 total), RedPajama (3,877), and The
Pile (7,533), documents typically contain a mix of special characters that denote spacing (e.g., ‘\n’,
or ‘\t’). In RedPajama, all of the empty strings are from the arXiv subset. The longest document in
The Stack is a json file, with 26,298,134 tokens from http://jquery.com/. The longest document
in The Pile and RedPajama is the same encyclopedia book called “INTERNATIONAL ENCYCLOPEDIA
OF THE SOCIAL & BEHAVIORAL SCIENCES” from the Books3 subset with 28,121,329 tokens.

4.2.2 INTERNET DOMAIN DISTRIBUTION

Some corpora contain metadata information about the URL where the documents came from. As
such, we employ the Exact Counts functionality, to parse the entire corpus, and extract information
from the URLs about the (1) schemas (e.g., http, https), (2) domains (e.g., www.google.com, en.
wikipedia.org, etc.), and (3) suffixes (e.g., com, org, de, etc.).

We apply these counts on the corpora that contain this information, namely C4, mC4-en, OSCAR,
RedPajama, and LAION-2B-en. Starting with the domain analysis, we perform these counts twice:
once when each domain is counted per document (yielding documents per domain) and another
where each domain is counted per token (yielding tokens per domain). We present the results of
three corpora per token in Figure 2 (and the full results in Appendix B.1). First, we note that C4
contains documents from a diverse set of domains, and even the percentage of the most common
one, patents.google.com, is less than 0.05%. On the other hand, in the case of LAION-2B-en,
cdn.shopify.com is responsible for more than 6% of the documents. Similarly, arxiv.org is
responsible for more than 12% of the documents in RedPajama. We showcase the results of the
domains for the other corpora, as well as the schemas and suffixes in Appendix B.1.

1We use Unicode text segmentation (Unicode, 2023) as a tokenizer, but we support any tokenizer supported
by HuggingFace (Moi & Patry, 2023).
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[Elazar et al. 2023]

WIMBD Demo

https://wimbd.apps.allenai.org/


• Large language models ingest 
large amounts of copyrighted 
data


• Is it legal? What are the 
implications? 


• Very complex issue … 


- Privacy, copyright, bias, etc.

Copyrighted Data
Data

21



• Low-resource languages


• Dialects with fewer speakers (e.g., African-American English)


• Non-written languages (e.g., American Sign Language)


• Language from people not on the web

What is the Web Missing?
Data

22

All this comes to reinforce biases, which impact the 
technology available to people



Compute
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on gpt-3, Codex and Copilot, now aim to
turn programmers’ descriptions of what
they want into the code which will do it. It
doesn’t always work; our attempt to have
Copilot program a web-based carousel of
Economist covers to the strains of Wagner
was a washout. But give it easily described,
discrete and constrained tasks that can act
as building blocks for grander schemes
and things go better. Developers with ac-
cess to Copilot on GitHub, a Microsoft-
owned platform which hosts open-source
programs, already use it to provide a third
of their code when using the most impor-
tant programming languages.

Bring on the stochastic parrots
Scarcely a week now passes without one
firm or another announcing a new model.
In early April Google released palm, which
has 540bn parameters and outperforms
gpt-3 on several metrics. It can also, re-
markably, explain jokes. So-called multi-
modal models are proliferating too. In May
DeepMind, a startup owned by Google, un-
veiled Gato, which, having been trained on
an appropriate range of data, can play vid-
eo games and control a robotic arm as well
as generating text. Meta, for its part, has
begun to develop an even more ambitious
“World Model” that will hoover up data
such as facial movements and other bodily
signals. The idea is to create an engine to
power the firm’s future metaverse.

This is all good news for the chipmak-
ers. The ai boom is one of the things that
have made Nvidia the world’s most valu-
able designer of semiconductors, with a
market value of $468bn. 

It is also great for startups turning the
output of foundation models into pro-
ducts. Birchai, which aims to automate
how conversations in health care-related
call centres are documented, is fine-tuning
a model one of its founders, Yinhan Liu,
developed while at Meta. Companies are
using gpt-3 to provide a variety of services.

Viable uses it to help firms sift through
customer feedback; Fable Studios creates
interactive stories with it; on Elicit it helps
people directly answer research questions
based on academic papers. Openai charges
them between $0.0008 and $0.06 for
about 750 words of output, depending on
how fast they need the words and what
quality they require.

Foundation models can also be used to
distil meaning from corporate data, such
as logs of customer interactions or sensor
readings from a shop floor, says Dario Gil,
the head of ibm’s research division. Fer-
nando Lucini, who sets the ai agenda at Ac-
centure, another big corporate-tech firm,
predicts the rise of “industry foundation
models”, which will know, say, the basics
of banking or carmaking and make this
available to paying customers through an
interface called an api.

The breadth of the enthusiasm helps
make general-purpose-technology-like ex-
pectations of impacts across the economy
look plausible. That makes it important to
look at the harm these developments

might do before they get baked into the
everyday world.

“On the dangers of stochastic parrots:
Can language models be too big?” a paper
published in March 2021, provides a good
overview of concerns; it also led to one of
the authors, Timnit Gebru, losing her job at
Google. “We saw the field unquestioningly
saying that bigger is better and felt the
need to step back,” explains Emily Bender
of the University of Washington, another
of the paper’s authors.

Their work raises important points.
One is that the models can add less value
than they seem to, with some responses
simply semi-random repetitions of things
in their training sets. Another is that some
inputs, such as questions with nonsensi-
cal premises, trigger “hallucinations” rath-
er than admissions of defeat. 

And though they have no monopoly on
algorithmic bias, the amount of internet
data they ingest can give foundation mod-
els misleading and unsavoury hang-ups.
When given a prompt in which Muslims
are doing something, gpt-3 is much more
likely to take the narrative in a violent di-
rection than it is if the prompt refers to ad-
herents of another faith. Terrible in any
model. Worse in models aimed at becom-
ing foundations for lots of other things 

Avoid the Turing trap
Model-makers are developing various
techniques to keep their ais from going
toxic or off the rails, ranging from better
curation of training data to “red teams”
that try to make them misbehave. Many al-
so limit access to the full power of the
models. Openai has users rate outputs
from gpt-3 and then feeds those ratings
back into the model, something called “re-
inforcement learning with human feed-
back”. Researchers at Stanford are working
on a virtual scalpel, appropriately called
mend, meant to remove “bad” neurons. 

Bias in the field’s incentives may be
harder to handle. Most of those involved—
technologists, executives and sometimes
politicians—want more powerful models.
They are seen as the path to academic ku-
dos, gobs of money or national prestige.
Ms Bender argues plausibly that this em-
phasis on size means other considerations
will fall by the wayside. The field is focused
on standardised benchmark tests—there
are hundreds, ranging from reading com-
prehension to object recognition—and ne-
glecting more qualitative assessments, as
well as the technology’s social impact. 

Erik Brynjolfsson, an economist at
Stanford, worries that an obsession with
scale and person-like abilities will push
societies into what he calls a “Turing trap”.
He argues in a recent essay that this focus
lends itself to the automation of human
activities using brute computational force
when alternative approaches could focus

The blessings of scale

Sources: “Compute trends across three eras of machine learning”, by J. Sevilla et al., arXiv, 2022; Our World in Data
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on gpt-3, Codex and Copilot, now aim to
turn programmers’ descriptions of what
they want into the code which will do it. It
doesn’t always work; our attempt to have
Copilot program a web-based carousel of
Economist covers to the strains of Wagner
was a washout. But give it easily described,
discrete and constrained tasks that can act
as building blocks for grander schemes
and things go better. Developers with ac-
cess to Copilot on GitHub, a Microsoft-
owned platform which hosts open-source
programs, already use it to provide a third
of their code when using the most impor-
tant programming languages.

Bring on the stochastic parrots
Scarcely a week now passes without one
firm or another announcing a new model.
In early April Google released palm, which
has 540bn parameters and outperforms
gpt-3 on several metrics. It can also, re-
markably, explain jokes. So-called multi-
modal models are proliferating too. In May
DeepMind, a startup owned by Google, un-
veiled Gato, which, having been trained on
an appropriate range of data, can play vid-
eo games and control a robotic arm as well
as generating text. Meta, for its part, has
begun to develop an even more ambitious
“World Model” that will hoover up data
such as facial movements and other bodily
signals. The idea is to create an engine to
power the firm’s future metaverse.

This is all good news for the chipmak-
ers. The ai boom is one of the things that
have made Nvidia the world’s most valu-
able designer of semiconductors, with a
market value of $468bn. 

It is also great for startups turning the
output of foundation models into pro-
ducts. Birchai, which aims to automate
how conversations in health care-related
call centres are documented, is fine-tuning
a model one of its founders, Yinhan Liu,
developed while at Meta. Companies are
using gpt-3 to provide a variety of services.

Viable uses it to help firms sift through
customer feedback; Fable Studios creates
interactive stories with it; on Elicit it helps
people directly answer research questions
based on academic papers. Openai charges
them between $0.0008 and $0.06 for
about 750 words of output, depending on
how fast they need the words and what
quality they require.

Foundation models can also be used to
distil meaning from corporate data, such
as logs of customer interactions or sensor
readings from a shop floor, says Dario Gil,
the head of ibm’s research division. Fer-
nando Lucini, who sets the ai agenda at Ac-
centure, another big corporate-tech firm,
predicts the rise of “industry foundation
models”, which will know, say, the basics
of banking or carmaking and make this
available to paying customers through an
interface called an api.

The breadth of the enthusiasm helps
make general-purpose-technology-like ex-
pectations of impacts across the economy
look plausible. That makes it important to
look at the harm these developments

might do before they get baked into the
everyday world.

“On the dangers of stochastic parrots:
Can language models be too big?” a paper
published in March 2021, provides a good
overview of concerns; it also led to one of
the authors, Timnit Gebru, losing her job at
Google. “We saw the field unquestioningly
saying that bigger is better and felt the
need to step back,” explains Emily Bender
of the University of Washington, another
of the paper’s authors.

Their work raises important points.
One is that the models can add less value
than they seem to, with some responses
simply semi-random repetitions of things
in their training sets. Another is that some
inputs, such as questions with nonsensi-
cal premises, trigger “hallucinations” rath-
er than admissions of defeat. 

And though they have no monopoly on
algorithmic bias, the amount of internet
data they ingest can give foundation mod-
els misleading and unsavoury hang-ups.
When given a prompt in which Muslims
are doing something, gpt-3 is much more
likely to take the narrative in a violent di-
rection than it is if the prompt refers to ad-
herents of another faith. Terrible in any
model. Worse in models aimed at becom-
ing foundations for lots of other things 

Avoid the Turing trap
Model-makers are developing various
techniques to keep their ais from going
toxic or off the rails, ranging from better
curation of training data to “red teams”
that try to make them misbehave. Many al-
so limit access to the full power of the
models. Openai has users rate outputs
from gpt-3 and then feeds those ratings
back into the model, something called “re-
inforcement learning with human feed-
back”. Researchers at Stanford are working
on a virtual scalpel, appropriately called
mend, meant to remove “bad” neurons. 

Bias in the field’s incentives may be
harder to handle. Most of those involved—
technologists, executives and sometimes
politicians—want more powerful models.
They are seen as the path to academic ku-
dos, gobs of money or national prestige.
Ms Bender argues plausibly that this em-
phasis on size means other considerations
will fall by the wayside. The field is focused
on standardised benchmark tests—there
are hundreds, ranging from reading com-
prehension to object recognition—and ne-
glecting more qualitative assessments, as
well as the technology’s social impact. 

Erik Brynjolfsson, an economist at
Stanford, worries that an obsession with
scale and person-like abilities will push
societies into what he calls a “Turing trap”.
He argues in a recent essay that this focus
lends itself to the automation of human
activities using brute computational force
when alternative approaches could focus

The blessings of scale

Sources: “Compute trends across three eras of machine learning”, by J. Sevilla et al., arXiv, 2022; Our World in Data
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• When we scale up… 


- The model size


- The number of training examples


- The batch size


- The number of model updates (i.e., training longer)

How Does Performance Improve?
Scaling Up Impact
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• Empirical test loss has a power law relationship with each 
individual factor


• Transformers scale well, and in a very predictable way

Scaling Laws
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Figure 1 Language modeling performance improves smoothly as we increase the model size, datasetset
size, and amount of compute2 used for training. For optimal performance all three factors must be scaled
up in tandem. Empirical performance has a power-law relationship with each individual factor when not
bottlenecked by the other two.

Performance depends strongly on scale, weakly on model shape: Model performance depends most
strongly on scale, which consists of three factors: the number of model parameters N (excluding embed-
dings), the size of the dataset D, and the amount of compute C used for training. Within reasonable limits,
performance depends very weakly on other architectural hyperparameters such as depth vs. width. (Section
3)

Smooth power laws: Performance has a power-law relationship with each of the three scale factors
N,D,C when not bottlenecked by the other two, with trends spanning more than six orders of magnitude
(see Figure 1). We observe no signs of deviation from these trends on the upper end, though performance
must flatten out eventually before reaching zero loss. (Section 3)

Universality of overfitting: Performance improves predictably as long as we scale up N and D in tandem,
but enters a regime of diminishing returns if either N or D is held fixed while the other increases. The
performance penalty depends predictably on the ratio N0.74/D, meaning that every time we increase the
model size 8x, we only need to increase the data by roughly 5x to avoid a penalty. (Section 4)

Universality of training: Training curves follow predictable power-laws whose parameters are roughly
independent of the model size. By extrapolating the early part of a training curve, we can roughly predict the
loss that would be achieved if we trained for much longer. (Section 5)

Transfer improves with test performance: When we evaluate models on text with a different distribution
than they were trained on, the results are strongly correlated to those on the training validation set with
a roughly constant offset in the loss – in other words, transfer to a different distribution incurs a constant
penalty but otherwise improves roughly in line with performance on the training set. (Section 3.2.2)

Sample efficiency: Large models are more sample-efficient than small models, reaching the same level of
performance with fewer optimization steps (Figure 2) and using fewer data points (Figure 4).

Convergence is inefficient: When working within a fixed compute budget C but without any other restric-
tions on the model size N or available data D, we attain optimal performance by training very large models
and stopping significantly short of convergence (see Figure 3). Maximally compute-efficient training would
therefore be far more sample efficient than one might expect based on training small models to convergence,
with data requirements growing very slowly as D ⇠ C0.27 with training compute. (Section 6)

Optimal batch size: The ideal batch size for training these models is roughly a power of the loss only,
and continues to be determinable by measuring the gradient noise scale [MKAT18]; it is roughly 1-2 million
tokens at convergence for the largest models we can train. (Section 5.1)

Taken together, these results show that language modeling performance improves smoothly and predictably
as we appropriately scale up model size, data, and compute. We expect that larger language models will
perform better and be more sample efficient than current models.

3
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• Scaling laws do not account for the number of parameters in the 
embeddings


• Because it complicates the relationship, which now depends on 
the number of layers as well

Scaling Laws
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Figure 5 Performance depends very mildly on model shape when the total number of non-embedding
parameters N is held fixed. The loss varies only a few percent over a wide range of shapes. Small differences
in parameter counts are compensated for by using the fit to L(N) as a baseline. Aspect ratio in particular can
vary by a factor of 40 while only slightly impacting performance; an (nlayer, dmodel) = (6, 4288) reaches a
loss within 3% of the (48, 1600) model used in [RWC+19].

Figure 6 Left: When we include embedding parameters, performance appears to depend strongly on the
number of layers in addition to the number of parameters. Right: When we exclude embedding parameters,
the performance of models with different depths converge to a single trend. Only models with fewer than 2
layers or with extreme depth-to-width ratios deviate significantly from the trend.

In this section we will display data along with empirically-motivated fits, deferring theoretical analysis to
later sections.

3.1 Approximate Transformer Shape and Hyperparameter Independence

Transformer performance depends very weakly on the shape parameters nlayer, nheads, and d↵ when we hold
the total non-embedding parameter count N fixed. To establish these results we trained models with fixed
size while varying a single hyperparameter. This was simplest for the case of nheads. When varying nlayer,
we simultaneously varied dmodel while keeping N ⇡ 12nlayerd2model fixed. Similarly, to vary d↵ at fixed
model size we also simultaneously varied the dmodel parameter, as required by the parameter counts in Table
1. Independence of nlayers would follow if deeper Transformers effectively behave as ensembles of shallower
models, as has been suggested for ResNets [VWB16]. The results are shown in Figure 5.

3.2 Performance with Non-Embedding Parameter Count N

In Figure 6 we display the performance of a wide variety of models, ranging from small models with shape
(nlayer, dmodel) = (2, 128) through billion-parameter models, ranging in shape from (6, 4288) through
(207, 768). Here we have trained to near convergence on the full WebText2 dataset and observe no over-
fitting (except possibly for the very largest models).

As shown in Figure 1, we find a steady trend with non-embedding parameter count N , which can be fit to the
first term of Equation (1.5), so that

L(N) ⇡
✓
Nc

N

◆↵N

(3.1)

8

[Kaplan et al. 2020]



• Larger models require fewer samples to reach the same 
performance


• The optimal model size grows smoothly with the loss target and 
compute budget

Scaling Laws
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Larger models require fewer samples 
to reach the same performance
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Figure 2 We show a series of language model training runs, with models ranging in size from 103 to 109

parameters (excluding embeddings).

Figure 3 As more compute becomes available, we can choose how much to allocate towards training larger
models, using larger batches, and training for more steps. We illustrate this for a billion-fold increase in
compute. For optimally compute-efficient training, most of the increase should go towards increased model
size. A relatively small increase in data is needed to avoid reuse. Of the increase in data, most can be used to
increase parallelism through larger batch sizes, with only a very small increase in serial training time required.

1.2 Summary of Scaling Laws

The test loss of a Transformer trained to autoregressively model language can be predicted using a power-law
when performance is limited by only either the number of non-embedding parameters N , the dataset size D,
or the optimally allocated compute budget Cmin (see Figure 1):

1. For models with a limited number of parameters, trained to convergence on sufficiently large
datasets:

L(N) = (Nc/N)↵N ; ↵N ⇠ 0.076, Nc ⇠ 8.8⇥ 1013 (non-embedding parameters) (1.1)

2. For large models trained with a limited dataset with early stopping:

L(D) = (Dc/D)↵D ; ↵D ⇠ 0.095, Dc ⇠ 5.4⇥ 1013 (tokens) (1.2)

3. When training with a limited amount of compute, a sufficiently large dataset, an optimally-sized
model, and a sufficiently small batch size (making optimal3 use of compute):

L(Cmin) =
�
Cmin

c /Cmin

�↵min
C ; ↵min

C ⇠ 0.050, Cmin
c ⇠ 3.1⇥ 108 (PF-days) (1.3)

3We also observe an empirical power-law trend with the training compute C (Figure 1) while training at fixed batch
size, but it is the trend with Cmin that should be used to make predictions. They are related by equation (5.5).
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• Scaling laws allow us to predict the loss: 


- Given a compute budget, how should we scale the data and 
number of parameters to get the best model? 


• Scaling laws were identified by Kaplan et al. 2020, and later 
refined by Hoffmann et al. 2022


• The papers also provide exact formulas with coefficients for the 
Transformer architectures they used

Scaling Laws
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https://arxiv.org/abs/2001.08361
https://arxiv.org/abs/2203.15556


• Extracting memorized training data


- Personally identifiable information 


- Memorized storylines with real 
names (even if turned out to be 
wrong!)


• Poisoning the training data


- LLMs ingest data at scale that 
enables no monitoring


• Stealing models


• Prompt stealing and “jailbreaking”

Security and Privacy Risks

30



• Legal issues


- Copyright violations, liability 
questions, regulation


• Political issues


- Mis/disinformation, 
monitoring, and censorship


• Economic issues


- LLMs replacing human labor


• Environmental costs

Societal Impact

31
https://www.wgacontract2023.org/the-campaign/summary-of-the-2023-wga-mba

WGA MBA

https://www.wgacontract2023.org/the-campaign/summary-of-the-2023-wga-mba


• Many open questions 
about liability and risk


• Critical for companies


• Even more critical in 
some domains (e.g., 
medical)

Societal Implications

32
https://nypost.com/2024/01/20/news/company-disables-ai-after-bot-starts-swearing-at-customer/ 

https://www.theguardian.com/world/2024/feb/16/air-canada-chatbot-lawsuit

https://nypost.com/2024/01/20/news/company-disables-ai-after-bot-starts-swearing-at-customer/


• We get really expressive representations


• Very impressive generations


• But how useful are these models? 


- Not that useful, yet


- But: we can fine-tune them to be very useful 


‣ This is often called alignment


‣ We will get back to this very soon

What Do We Get?
Scaling Up
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• I put ____ form down on the table [syntax]

• The woman walked across the street, checking for traffic over ___ shoulder 

[coreference]

• I went to the ocean to see the fish, turtles, seals, and ____ [lexical semantics / 

topics]

• Overall, the value I got from the two hours watching it was the sum total of the 

popcorn and the drink. The movie was _____ [sentiment]

• I was thinking about the sequence that goes 1, 1, 2, 3, 5, 8, 13, 21, ______ 

[reasoning]

• Cornell Tech is located in _____, New York [knowledge]


The learned representations have to account for a lot to succeed in this 
seemingly straightforward task



GPT-3 175B Example
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What is the purpose of the list C in the code below? 

def binomial_coefficient(n, r):


C = [0 for i in range(r + 1)];

C[0] = 1;

for i in range(1, n + 1):


j = min(i, r); 

while j > 0:


C[j] += C[j - 1];

j -= 1;


return C[r]

A. to store the value of C[0]

B. to store the value of C[1]

C. to store the value of C[i]

D. to store the value of C[i - 1]

The list C in this code is used to store the values of the 
binomial coefficient as the function iterates through the 
values of n and r. It is used to calculate the value of the 
binomial coefficient for a given value of n and r, and 
stores the result in the final return value of the function.

Prompt GPT-3 175B Completion

InstructGPT 175B Completion
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The square root of x is the cube root of y. What is y to the 
power of 2, if x = 4?

Q. The square root of x is the cube root of y. What is y to 
the power of 2, if x = 8? 

Q. The square root of x is the cube root of y. What is y to 
the power of 2, if x = 12? 

Q. The square root of x is the cube root of y. What is y to 
the power of 2, if x = 16?

64

Prompt

PaLM 540B Completion

Flan-PaLM 540B Completion

Make up a word that means “when two AI researchers go 
on a date”.

Make up a word that means "when two AI researchers go 
on a date". 

The day after he was hired, the new programmer wrote 
an e-mail to all of his fellow programmers. It said, "I will 
be on vacation next week." 

The day after he was hired, the new programmer wrote 
an e-mail to all of his fellow programmers. It said, "I will 
be on vacation next week." 

The day after [...]

date-mining

Prompt

PaLM 540B Completion

Flan-PaLM 540B Completion
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