Raw Data Decoding LMs

Cornell CS 5740: Natural Language Processing Yoav Artzi, Spring 2023

What Can We Do with LMs?

- Given a sequence \bar{x} compute the probability of the sequence
 - For example, for an autoregressive model¹

•
$$p(\bar{x}) = \prod_{i=1}^{N} p(x_i | x_1, \dots, x_{i-1})$$

- Given a prefix, autoregressive sequence generation (i.e., decoding)
 - The prefix can be empty (sort of: always includes a start token)
 - This prefix is called a prompt

¹ predict future behavior based on past behavior data

Greedy vs. Sampling

• Sampling:

$$x_i \sim p(x_i | x_1, \dots, x_{i-1})$$
 until $x_i = \text{STOP}$

• Greedy (i.e., arg max):

$$x_i = \arg \max_{x_1 \in \mathscr{V}} p(x_i | x_1, \dots, x_{i-1}) \text{ until } x_i = \text{STOP}$$

- How many different strings can we generate this way?

Adjusting Distribution Temperature

- Let's say we want something between sampling and greedy
 - Not fully deterministic
 - But to control how focused on the top of the distribution with high likelihood
- Add a temperature parameter to the softmax
 - Given **h** is the vector with logits, and $T \in \mathbb{R}$ in the temperature

$$p_T(x_i = w) = \frac{\exp(h_w/T)}{\sum_{w'} \exp(h_{w'}/T)}$$

Adjusting Distribution Temperature

- Add a temperature parameter to the softmax
 - Given \mathbf{h} is the vector with logits, and $T \in \mathbb{R}$ in the temperature

$$p_T(x_i = w) = \frac{\exp(h_w/T)}{\sum_{w'} \exp(h_{w'}/T)}$$

- What happens with T = 1? T = 0 (or almost)? $T \in [0,1)$? T > 1?

Other Decoding Techniques

- Top-k sampling
 - Drop everything but top-k tokens in the probability distribution, and re-normalize
- Nucleus sampling (Holtzman et al. 2020)
 - Drop everything but the top tokens that their probability sums to a specified value (e.g., 0.9) and re-normalize

Decoding

- Various decoding techniques: greedy, sampling, temperaturebased, top-k, nucleus
- Most common: temperature-based
- Which are guaranteed to give you the optimal output? Will arg max give you the optimal output?

Decoding

- Various decoding techniques: greedy, sampling, temperaturebased, top-k, nucleus
- Most common: temperature-based
- Which are guaranteed to give you the optimal output? Will arg max give you the optimal output?

Beam Search

- Sampling techniques are not optimal
 - Following a single hypothesis is just not sufficient, but enumerating all is intractable
- Beam search is middle ground
 - Follow a set of hypothesis, always keeping the top ones

Beam Search

- Sampling techniques are not optimal
 - Following a single hypothesis is just not sufficient, but enumerating all is intractable
- Beam search is middle ground
 - Follow a set of hypothesis, always keeping the top ones
 - The size of the set B is a hyperparameter
 - It's an approximation method
 - What happens with B = 1? $B = \infty$?
 - What is the cost of beam search compared to the sampling techniques we saw?
 - Can you combine sampling techniques with beam search?

Acknowledgements

We thank the following sources for the materials on which the slides on this deck are based:

- Berkeley CS 288 by Alane Suhr and Dan Klein
- CMU 11-667 by Daphne Ippolito and Chenyan Xiong