Raw Data

Neural Language Models and Transformers

Cornell CS 5740: Natural Language Processing

Yoav Artzi, Spring 2023

- LMs so far: count-based estimates of probabilities
 - Counts are brittle and generalize poorly, so we added smoothing
- The quantity that we are focused on estimating (e.g., for tri-gram model):

$$p(\bar{x}) = \prod_{i=1}^{n} p(x_i | x_{i-1}, x_{i-2}), \text{ where } x_0, x_{-1} = *, x_i \in \mathcal{V} \cup \{\text{STOP}\}\$$

Can we use neural networks for this task? What would it give us?
 What are the costs?

A Very Simple Approach

Instead of having count-based distributions, parameterize them

$$p(x_i | x_{i-1}, x_{i-2}; \theta)$$

- How would we model this with a neural network?
 - Hint: so far, only learned about MLPs

A Very Simple Approach

A simple MLP-ish model

$$p(x_i = w \mid x_{i-1}, x_{i-2}; \theta) = \operatorname{softmax}(\mathbf{y})_w$$
$$\mathbf{y} = \mathbf{b} + \mathbf{W}\mathbf{x} + \mathbf{U} \tanh(\mathbf{d} + \mathbf{H}\mathbf{x})$$
$$\mathbf{x} = [\phi(x_{i-1}); \phi(x_{i-2})]$$

where ϕ is an embedding function, and $\theta = (\mathbf{b}, \mathbf{d}, \mathbf{W}, \mathbf{U}, \mathbf{H}, \mathbf{C}, \phi)$

- The parameters θ are estimated by maximizing the log probability of the data
- During inference, you compute the neural network every time you need a value from the probability distribution

Neural Language Models A Very Simple Approach

A simple MLP-ish model

$$p(x_i = w \mid x_{i-1}, x_{i-2}; \theta) = \operatorname{softmax}(\mathbf{y})_w$$
$$\mathbf{y} = \mathbf{b} + \mathbf{W}\mathbf{x} + \mathbf{U} \tanh(\mathbf{d} + \mathbf{H}\mathbf{x})$$
$$\mathbf{x} = [\phi(x_{i-1}); \phi(x_{i-2})]$$

where ϕ is an embedding function, and $\theta = (\mathbf{b}, \mathbf{d}, \mathbf{W}, \mathbf{U}, \mathbf{H}, \mathbf{C}, \phi)$

• What does it give us? Think smoothing ...

Neural Language Models A Very Simple Approach

A simple MLP-ish model

$$p(x_i = w \mid x_{i-1}, x_{i-2}; \theta) = \operatorname{softmax}(\mathbf{y})_w$$
$$\mathbf{y} = \mathbf{b} + \mathbf{W}\mathbf{x} + \mathbf{U} \tanh(\mathbf{d} + \mathbf{H}\mathbf{x})$$
$$\mathbf{x} = [\phi(x_{i-1}); \phi(x_{i-2})]$$

where ϕ is an embedding function, and $\theta = (\mathbf{b}, \mathbf{d}, \mathbf{W}, \mathbf{U}, \mathbf{H}, \mathbf{C}, \phi)$

• What does it give us? Think smoothing ...

$$\operatorname{softmax}(\mathbf{y})_{w} = \frac{\exp(y_{w})}{\sum_{y \in \mathbf{y}} \exp(y)}$$

- What does the softmax do the smoothing problem?
- What are the costs?

- The MLP approach can help with smoothing at some costs
- But essentially makes the same modeling choices
 - Assuming a finite horizon the Markov assumption
 - We adopted this assumption because of sparsity (i.e., smoothing) challenges
- Can neural networks allow us to revisit these assumptions?

Revisiting the Markov Assumption

- The Markov assumption was critical for generalization
- But: it's terrible for natural language!
 - "I ate a strawberry with some cream"
 - "I ate a strawberry that was picked in the field by the best farmer in the world with some cream"
- Dependencies can bridge arbitrarily long linear distances
 - We saw that already with word2vec
- It get even worse beyond the single sentence

Neural Language ModelsAn MLP with No Markov Assumption

Without the Markov assumption, the model is

$$p(\bar{x}) = \prod_{i=1}^{n} p(x_i | x_1, ..., x_{i-1})$$

We need to model the parameterized distribution

$$p(x_{i+1} | x_1, ..., x_i; \theta)$$

- Note: shifted the index here, because it will make things nicer later on — just a notation change
- How can we do this with the tools we already know?

Neural Language ModelsAn MLP with No Markov Assumption

We need to model the parameterized distribution

$$p(x_{i+1} | x_1, ..., x_i; \theta)$$

- We can just treat the context as a bag of words
 - Then it doesn't matter how long it is
 - A very simple example (two layer MLP)

$$\mathbf{h} = \tanh(\mathbf{W}'_{\frac{1}{i}} \sum_{j=1}^{i} \phi(x_j) + \mathbf{b}')$$

$$p(x_{i+1} | x_1, ..., x_i) = \operatorname{softmax}(\mathbf{W}''\mathbf{h} + \mathbf{b}'')$$

An MLP with No Markov Assumption

• We can just treat the context as a bag-of-words, for example:

$$\mathbf{h} = \tanh(\mathbf{W}' \frac{1}{i} \sum_{j=1}^{i} \phi(x_j) + \mathbf{b}')$$

$$p(x_{i+1} | x_1, ..., x_i) = \operatorname{softmax}(\mathbf{W}'' \mathbf{h} + \mathbf{b}'')$$

Why is this a terrible idea?

An MLP with No Markov Assumption

• We can just treat the context as a bag-of-words, for example:

$$\mathbf{h} = \tanh(\mathbf{W}' \frac{1}{i} \sum_{j=1}^{i} \phi(x_j) + \mathbf{b}')$$

$$p(x_{i+1} | x_1, ..., x_i) = \operatorname{softmax}(\mathbf{W}'' \mathbf{h} + \mathbf{b}'')$$

- Why is this a terrible idea?
 - Order matters a lot in language 👤
 - But it worked so well for text categorization ... 🤗
 - What may work for tasks that just require focusing on salient words (e.g., topic categorization), is not sufficient for language models (i.e., <u>next</u>-word prediction)

Bag of Words

- BOW can handle arbitrary length 😄
- But losses any notion of order 😩
- Furthermore, dependencies are complex 🥯
 - Not following linear order
 - Importance follow complex patterns
 - "I ate a strawberry that was picked in the field by the best farmer in the world with some cream"
 - "I ate a strawberry that was picked in the field by the best farmer in the world with clippers"
 - The model needs to focus on different parts in the context to predict different words

Bag of Words

A Uniform Distribution Over Past Words

- We can view BOW as a attending to all previous tokens equally
- So can rewrite our simple example MLP using a uniform distribution

$$p(j) = \frac{1}{i} , j = 1,...,i$$

$$\mathbf{h} = \tanh(\mathbf{W}' \sum_{j=1}^{i} p(j) \phi(x_j) + \mathbf{b}')$$

$$p(x_{i+1} | x_1, ..., x_i) = \operatorname{softmax}(\mathbf{W}'' \mathbf{h} + \mathbf{b}'')$$

What if we want to attend to past tokens in an adaptive way?

Bag of Words

A Uniform Distribution Over Past Words

- We can view BOW as a attending to all previous tokens equally
- So can rewrite our simple example MLP using a uniform distribution

$$p(j) = \frac{1}{i} , j = 1,...,i$$

$$\mathbf{h} = \tanh(\mathbf{W}' \sum_{j=1}^{i} p(j) \phi(x_j) + \mathbf{b}')$$

$$p(x_{i+1} | x_1, ..., x_i) = \operatorname{softmax}(\mathbf{W}'' \mathbf{h} + \mathbf{b}'')$$

- What if we want to attend to past tokens in an adaptive way?
 - We need a way to do weighted processing of context to represent that different words depend on context differently
 - This weighted processing must reflect ordering

Attention

- An architecture that functions similar to a soft query-key-value dictionary lookup
- Given a query $\mathbf{q} \in \mathbb{R}^{d_k}$ and a key-value dictionary $\{(\mathbf{k}^{(i)}, \mathbf{v}^{(i)})\}_{i=1}^N$ where $\mathbf{k}^{(i)} \in \mathbb{R}^{d_k}$, $\mathbf{v}^{(i)} \in \mathbb{R}^{d_v}$
- 1. Compute a probability distribution over dictionary entries

$$a_i = \mathbf{q} \cdot \mathbf{k}^{(i)}$$
, $p(i) = \operatorname{softmax}(\mathbf{a})$

2. Output $\mathbf{z} \in \mathbb{R}^{d_v}$ is weighted average of values: $\mathbf{z} = \sum_{i=1}^N p(i)\mathbf{v}^{(i)}$

- Attention where the query, keys, and values come from the same input
- Given a set of vectors $\{\mathbf{x}^{(1)},...,\mathbf{x}^{(N)}\}$ and a query position $j\in 1,...,N$ we want to create a weighted sum of all vectors
- 1. Compute query, keys, and values vectors via linear transformation

$$\mathbf{q} = \mathbf{W}_q \mathbf{x}^{(j)} \quad \mathbf{k}^{(i)} = \mathbf{W}_k \mathbf{x}^{(i)} \quad \mathbf{v}^{(i)} = \mathbf{W}_v \mathbf{x}^{(i)}$$

2. Compute a probability distribution over dictionary entries

$$a_i = \mathbf{q} \cdot \mathbf{k}^{(i)}$$
, $p(i) = \operatorname{softmax}(\mathbf{a})$

3. Output $\mathbf{z} \in \mathbb{R}^{d_v}$ is weighted average of values: $\mathbf{z} = \sum_{i=1}^N p(i)\mathbf{v}^{(i)}$

Self-attention More Important Details

- Computing attention using loops is crazy slow \to it is critical to do everything with a few matrix multiplications by packing all keys and values in matrices K and V
- We usually compute for multiple queries ${f Q}$, resulting in multiple outputs ${f Z}$
- Finally, it is common to divide by $\sqrt{d_k}$ because the dot-product is likely to get large in relation the key dimensionality

SelfAttn(
$$\mathbf{Q}, \mathbf{K}, \mathbf{V}$$
) = \mathbf{Z} = softmax($\mathbf{Q}\mathbf{K}/\sqrt{d_k}$) \mathbf{V}

LM with Self-attention

From BOW to Self-attention

Reminder, this is the simple BOW LM we showed earlier

$$p(j) = \frac{1}{i} , j = 1,...,i$$

$$\mathbf{h} = \tanh(\mathbf{W}' \sum_{j=1}^{i} p(j) \phi(x_j) + \mathbf{b}') \qquad \mathbf{q} = \mathbf{W}_q \phi(x_i)$$

$$p(x_{i+1} | x_1, ..., x_i) = \operatorname{softmax}(\mathbf{W}'' \mathbf{h} + \mathbf{b}'') \qquad \mathbf{K} - \mathbf{W}_{\perp} [\phi(x_i)]$$

- We can easily plug in self-attention to create a weighted processing of the context
- The query is computed from the most recent token
- Keys and values are computed from entire context (i.e., all previous tokens)
- Did we solve the issues with BOW?
 - Words can't depend on context differently
 - X Attention is **order** invariant

$$\mathbf{q} = \mathbf{w}_{q} \varphi(x_{i})$$

$$\mathbf{K} = \mathbf{W}_{k} [\phi(x_{1}) \cdots \phi(x_{i})]$$

$$\mathbf{V} = \mathbf{W}_{v} [\phi(x_{1}) \cdots \phi(x_{i})]$$

$$\mathbf{z} = \text{SelfAttn}(\mathbf{q}, \mathbf{K}, \mathbf{V})$$

$$\mathbf{h} = \mathbf{W}'' \text{tanh}(\mathbf{W}' \mathbf{z} + \mathbf{b}') + \mathbf{b}''$$

$$p(x_{i+1} | x_{1}, \dots, x_{i}) = \text{softmax}(\mathbf{h})$$

Marking Positions

Self-attention with Positional Embeddings

- Idea: let's mark positions
- Learning will figure out what how to use them
- Simple version: **learnable** embeddings $\phi_p(i)$
- More advanced: fixed embeddings, where values determined by sine waves, with different frequency and offset of each dimensions

Either way, add them to token embeddings

$$\mathbf{x}_{j} = \phi(x_{j}) + \phi_{p}(j), j = 1,..., i$$

$$\mathbf{q} = \mathbf{W}_{q} \mathbf{x}_{i}$$

$$\mathbf{K} = \mathbf{W}_{k} [\mathbf{x}_{1} \cdots \mathbf{x}_{i}]$$

$$\mathbf{V} = \mathbf{W}_{v} [\mathbf{x}_{1} \cdots \mathbf{x}_{i}]$$

$$\mathbf{z} = \text{SelfAttn}(\mathbf{q}, \mathbf{K}, \mathbf{V})$$

$$\mathbf{h} = \mathbf{W}'' \text{tanh}(\mathbf{W}' \mathbf{z} + \mathbf{b}') + \mathbf{b}''$$

$$p(x_{i+1} | x_{1}, ..., x_{i}) = \text{softmax}(\mathbf{h})$$

- Did we solve the issues with BOW?
 - Words can't depend on context differently
 - Attention is order invariant
- Let's make it more expressive!

$$\mathbf{x}_{j} = \phi(x_{j}) + \phi_{p}(j), j = 1,..., i$$

$$\mathbf{q} = \mathbf{W}_{q} \mathbf{x}_{i}$$

$$\mathbf{K} = \mathbf{W}_{k} [\mathbf{x}_{1} \cdots \mathbf{x}_{i}]$$

$$\mathbf{V} = \mathbf{W}_{v} [\mathbf{x}_{1} \cdots \mathbf{x}_{i}]$$

$$\mathbf{z} = \text{SelfAttn}(\mathbf{q}, \mathbf{K}, \mathbf{V})$$

$$\mathbf{h} = \mathbf{W}'' \text{tanh}(\mathbf{W}' \mathbf{z} + \mathbf{b}') + \mathbf{b}''$$

$$p(x_{i+1} | x_{1}, ..., x_{i}) = \text{softmax}(\mathbf{h})$$

Multiple Attention Heads

- Words need to attend to different elements in context
- But attention just does weighted average
- So: add more attention heads
- Let L be the number of attention heads

$$\mathbf{x}_{j} = \phi(x_{j}) + \phi_{p}(j), j = 1, ..., i$$

$$\mathbf{q}^{(l)} = \mathbf{W}_{q}^{(l)} \mathbf{x}_{i}$$

$$\mathbf{K}^{(l)} = \mathbf{W}_{k}^{(l)} [\mathbf{x}_{1} \cdots \mathbf{x}_{i}]$$

$$\mathbf{V}^{(l)} = \mathbf{W}_{v}^{(l)} [\mathbf{x}_{1} \cdots \mathbf{x}_{i}]$$

$$\mathbf{z} = [\text{SelfAttn}(\mathbf{q}^{(1)}, \mathbf{K}^{(1)}, \mathbf{V}^{(1)}); \cdots; \text{SelfAttn}(\mathbf{q}^{(L)}, \mathbf{K}^{(L)}, \mathbf{V}^{(L)})]$$

$$\mathbf{h} = \mathbf{W}'' \text{tanh}(\mathbf{W}' \mathbf{z} + \mathbf{b}') + \mathbf{b}''$$

$$p(x_{i+1} | x_{1}, ..., x_{i}) = \text{softmax}(\mathbf{h})$$

Add Neural Network Tricks

• Switch activation to GELU (Gaussian Error

Linear Unit)

Figure 1: The GELU ($\mu=0,\sigma=1$), ReLU, and ELU ($\alpha=1$).

- Residual connection: shown to help with training very deep networks
- LayerNorm (LN): shown to improve performance
 - Post-norm (original and here)

$$\mathbf{b} = \text{Module}(\text{LN}(\mathbf{a})) + \mathbf{a}$$

- Pre-norm (modern)

$$\mathbf{b} = \text{LN}(\text{Module}(\mathbf{a}) + \mathbf{a})$$

$$\mathbf{x}_{j} = \phi(x_{j}) + \phi_{p}(j), j = 1, ..., i$$

$$\mathbf{q}^{(l)} = \mathbf{W}_{q}^{(l)} \mathbf{x}_{i}$$

$$\mathbf{K}^{(l)} = \mathbf{W}_{k}^{(l)} [\mathbf{x}_{1} \cdots \mathbf{x}_{i}]$$

$$\mathbf{V}^{(l)} = \mathbf{W}_{v}^{(l)} [\mathbf{x}_{1} \cdots \mathbf{x}_{i}]$$

$$\mathbf{z} = \mathbf{LN}([\text{SelfAttn}(\mathbf{q}^{(1)}, \mathbf{K}^{(1)}, \mathbf{V}^{(1)}); \cdots; \\ \text{SelfAttn}(\mathbf{q}^{(L)}, \mathbf{K}^{(L)}, \mathbf{V}^{(L)})] + \mathbf{x}_{i})$$

$$\mathbf{h} = \mathbf{LN}(\mathbf{W}''\mathbf{GELU}(\mathbf{W}'\mathbf{z} + \mathbf{b}') + \mathbf{b}'' + \mathbf{z})$$

$$p(x_{i+1} | x_{1}, ..., x_{i}) = \text{softmax}(\mathbf{h})$$

Abstract and Stack It

- Abstract the whole computation as a Transformer block
- And stack it

$TransformerBlock^k(\boldsymbol{u}_1,...,\boldsymbol{u}_i)$

$$\mathbf{q}^{(l)} = \mathbf{W}_{q}^{(l)} \mathbf{u}_{i}$$

$$\mathbf{K}^{(l)} = \mathbf{W}_{k}^{(l)} [\mathbf{u}_{1} \cdots \mathbf{u}_{i}]$$

$$\mathbf{V}^{(l)} = \mathbf{W}_{v}^{(l)} [\mathbf{u}_{1} \cdots \mathbf{u}_{i}]$$

$$\mathbf{z} = \text{LN}([\text{SelfAttn}(\mathbf{q}^{(1)}, \mathbf{K}^{(1)}, \mathbf{V}^{(1)}); \cdots;$$

$$\text{SelfAttn}(\mathbf{q}^{(L)}, \mathbf{K}^{(L)}, \mathbf{V}^{(L)})] + \mathbf{u}_{i})$$

$$\mathbf{h}_{i}^{k} = \text{LN}(\mathbf{W}''\text{GELU}(\mathbf{W}'\mathbf{z} + \mathbf{b}') + \mathbf{b}'' + \mathbf{z})$$

$$\mathbf{x}_{i} = \phi(x_{i}) + \phi_{p}(i)$$

$$\mathbf{h}_{i}^{1} = \operatorname{TransformerBlock}^{1}(\mathbf{x}_{1}, ..., \mathbf{x}_{i})$$

$$\mathbf{h}_{i}^{2} = \operatorname{TransformerBlock}^{2}(\mathbf{h}_{1}^{1}, ..., \mathbf{h}_{i}^{1})$$

$$...$$

$$\mathbf{h}_{i}^{k} = \operatorname{TransformerBlock}^{k}(\mathbf{h}_{1}^{k-1}, ..., \mathbf{h}_{i}^{k-1})$$

$$...$$

$$\mathbf{h}_{i}^{K} = \operatorname{TransformerBlock}^{K}(\mathbf{h}_{1}^{K-1}, ..., \mathbf{h}_{i}^{K-1})$$

$$p(x_{i+1} | x_{1}, ..., x_{i}) = \operatorname{softmax}(\mathbf{W}^{\mathcal{V}} \mathbf{h}_{i}^{K})$$

- A variable length architecture
 - Was not the first architecture to do that
 - But we are not following the chronological order of events
- Key concept: self-attention
- Quickly became maybe the most dominant architecture
 - Try to think why

The Transformer

Decoder-only Variant

TransformerBlock^k($\mathbf{u}_1, ..., \mathbf{u}_i$)

$$\mathbf{q}^{(l)} = \mathbf{W}_{q}^{(l)} \mathbf{u}_{i}$$

$$\mathbf{K}^{(l)} = \mathbf{W}_{k}^{(l)} [\mathbf{u}_{1} \cdots \mathbf{u}_{i}]$$

$$\mathbf{V}^{(l)} = \mathbf{W}_{v}^{(l)} [\mathbf{u}_{1} \cdots \mathbf{u}_{i}]$$

$$\mathbf{z} = \text{LN}([\text{SelfAttn}(\mathbf{q}^{(1)}, \mathbf{K}^{(1)}, \mathbf{V}^{(1)}); \cdots;$$

$$\text{SelfAttn}(\mathbf{q}^{(L)}, \mathbf{K}^{(L)}, \mathbf{V}^{(L)})] + \mathbf{u}_{i})$$

$$\mathbf{h}_{i}^{k} = \text{LN}(\mathbf{W}''\text{GELU}(\mathbf{W}'\mathbf{z} + \mathbf{b}') + \mathbf{b}'' + \mathbf{z})$$

Self-attention reminder

$$SelfAttn(\mathbf{Q}, \mathbf{K}, \mathbf{V}) = softmax(\mathbf{Q}\mathbf{K}/\sqrt{d_k})\mathbf{V}$$

$$\mathbf{x}_{i} = \phi(x_{i}) + \phi_{p}(i)$$

$$\mathbf{h}_{i}^{1} = \operatorname{TransformerBlock}^{1}(\mathbf{x}_{1}, ..., \mathbf{x}_{i})$$

$$\mathbf{h}_{i}^{2} = \operatorname{TransformerBlock}^{2}(\mathbf{h}_{1}^{1}, ..., \mathbf{h}_{i}^{1})$$
...
$$\mathbf{h}_{i}^{k} = \operatorname{TransformerBlock}^{k}(\mathbf{h}_{1}^{k-1}, ..., \mathbf{h}_{i}^{k-1})$$
...
$$\mathbf{h}_{i}^{K} = \operatorname{TransformerBlock}^{K}(\mathbf{h}_{1}^{K-1}, ..., \mathbf{h}_{i}^{K-1})$$

$$p(x_{i+1} | x_{1}, ..., x_{i}) = \operatorname{softmax}(\mathbf{W}^{\mathcal{V}} \mathbf{h}_{i}^{K})$$

During learning, compute the whole sequence at ones by **masking** items you shouldn't attend to in softmax — easy by setting softmax to $-\infty$

TransformerShifted Outputs as Inputs

- For each time step:
 - Input: previous word (and everything computed before)
 - Output: probability distribution over the vocabulary

Language Model Training

 Training loss is the per-token negative log likelihood:

$$\mathcal{L} = -\log p(x_i | x_1, ..., x_{i-1})$$

- During training: we know all tokens
 - So masked self-attention
 - To account for ordering
- Transformers are very sensitive to learning rate schedule → linear warm up + cosine decay

Issues

- Time and memory complexity
 - Time: attention is quadratic $O(n^2)$ in sequence length n
 - Memory: Need to keep almost all past activation for selfattention
- Positional embeddings mean you can only handle positions up to the length you observed in training
- A lot of existing and ongoing work on both issues

Technical Complexities

- Some complexities you will encounter:
 - Masking self-attention
 - Batching
 - Learning rate sensitivity

A Success Story

- Transformers were designed with hardware in mind
 - Especially TPUs, but also GPUs
- Exceptionally designed for scale as far as hardware
- Turns out, also scale well for learning
- Unparalleled success in NLP, vision, speech, RL, science, and other areas

Natural Language

Decoder-only

Encoder-only

Encoder-decoder

GPT

BERT

T5

[START] [The] [cat]

[*] [*] [sat_] [*] [the_] [*]

[The_] [cat_] [MASK] [on_] [MASK] [mat_]

Das ist gut.

A storm in Attala caused 6 victims.

This is not toxic.

Output
Probabilities

Translate EN-DE: This is good.

Summarize: state authorities dispatched...

Is this toxic: You look beautiful today!

Computer Vision

- ViT: cut image to patches
- Project each patch to a vector
- Treat them as token embeddings

Speech

- Same as computer vision
- But: spectrograms instead of images
- The Whisper model

Reinforcement Learning (RL)

- Decision Transformers
- Inputs are action states and target values
- Value is (in a nutshell) how much reward you want to get
- Outputs are actions

Robotics

- Take observations and commands, all tokenized
- Output continuous joint control actions

Everything Everywhere All at Once

- Whatever you can tokenize, the Transformer will take
- What more: you can feed them all to the same model

Acknowledgements

- Some content was adapted from slides by <u>Lucas Beyer</u>
- We thank Greg Durrett, Ana Marasović, and Christian von der Weth for very helpful discussions.