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• LMs so far: count-based estimates of probabilities


- Counts are brittle and generalize poorly, so we added 
smoothing


• The quantity that we are focused on estimating (e.g., for tri-gram 
model):





• Can we use neural networks for this task? What would it give us? 
What are the costs? 

p(x̄) =
n

∏
i=1

p(xi |xi−1, xi−2), where x0, x−1 = * , xi ∈ 𝒱 ∪ {STOP}

Neural Language Models
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• Instead of having count-based distributions, parameterize them 





• How would we model this with a neural network?


- Hint: so far, only learned about MLPs

p(xi |xi−1, xi−2; θ)

A Very Simple Approach
Neural Language Models

3



• A simple MLP-ish model





where  is an embedding function, and 


• The parameters  are estimated by maximizing the log probability 
of the data


• During inference, you compute the neural network every time you 
need a value from the probability distribution

p(xi = w |xi−1, xi−2; θ) = softmax(y)w

y = b + Wx + U tanh(d + Hx)
x = [ϕ(xi−1); ϕ(xi−2)]

ϕ θ = (b, d, W, U, H, C, ϕ)

θ

A Very Simple Approach
Neural Language Models
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[Bengio et al. 2003]



• A simple MLP-ish model





where  is an embedding function, and 


• What does it give us? Think smoothing …





- What does the  do the smoothing problem?


• What are the costs? 

p(xi = w |xi−1, xi−2; θ) = softmax(y)w

y = b + Wx + U tanh(d + Hx)
x = [ϕ(xi−1); ϕ(xi−2)]

ϕ θ = (b, d, W, U, H, C, ϕ)

softmax(yw) =
exp(yw)

∑y∈y exp(y)

softmax

A Very Simple Approach
Neural Language Models
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• A simple MLP-ish model





where  is an embedding function, and 


• What does it give us? Think smoothing …





- What does the  do the smoothing problem?
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p(xi = w |xi−1, xi−2; θ) = softmax(y)w
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• The MLP approach can help with smoothing at some costs


• But essentially makes the same modeling choices


- Assuming a finite horizon — the Markov assumption


- We adopted this assumption because of sparsity (i.e., 
smoothing) challenges


• Can neural networks allow us to revisit these assumptions?

Neural Language Models
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• The Markov assumption was critical for generalization


• But: it’s terrible for natural language!


- “I ate a strawberry with some cream”


- “I ate a strawberry that was picked in the field by the best 
farmer in the world with some cream”


• Dependencies can bridge arbitrarily long linear distances


-  We saw that already with word2vec


• It get even worse beyond the single sentence

Revisiting the Markov Assumption
Neural Language Models
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• Without the Markov assumption, the model is





• We need to model the parameterized distribution 





- Note: shifted the index here, because it will make things nicer 
later on — just a notation change


• How can we do this with the tools we already know?

p(x̄) =
n

∏
i=1

p(xi |x1, …, xi−1)

p(xi+1 |x1, …, xi; θ)

An MLP with No Markov Assumption
Neural Language Models

9



• We need to model the parameterized distribution





• We can just treat the context as a bag of words


- Then it doesn’t matter how long it is


- A very simple example (two layer MLP)


p(xi+1 |x1, …, xi; θ)

h = tanh(W′￼
1
i ∑i

j=1 ϕ(xj) + b′￼)
p(xi+1 |x1, …, xi) = softmax(W′￼′￼h + b′￼′￼)

An MLP with No Markov Assumption
Neural Language Models
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• We can just treat the context as a bag-of-words, for example:





• Why is this a terrible idea?

h = tanh(W′￼
1
i ∑i

j=1 ϕ(xj) + b′￼)

p(xi+1 |x1, …, xi) = softmax(W′￼′￼h + b′￼′￼)

An MLP with No Markov Assumption
Neural Language Models
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• We can just treat the context as a bag-of-words, for example:





• Why is this a terrible idea?


- Order matters a lot in language 🤦


- But it worked so well for text categorization … 😮💨 


- What may work for tasks that just require focusing on salient words 
(e.g., topic categorization), is not sufficient for language models 
(i.e., next-word prediction)

h = tanh(W′￼
1
i ∑i

j=1 ϕ(xj) + b′￼)

p(xi+1 |x1, …, xi) = softmax(W′￼′￼h + b′￼′￼)

An MLP with No Markov Assumption
Neural Language Models
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• BOW can handle arbitrary length 😁 


• But losses any notion of order 😩 


• Furthermore, dependencies are complex 😵💫 


- Not following linear order


- Importance follow complex patterns


‣ “I ate a strawberry that was picked in the field 
by the best farmer in the world with some 
cream”


‣ “I ate a strawberry that was picked in the field 
by the best farmer in the world with clippers”


- The model needs to focus on different parts in 
the context to predict different words

Bag of Words
Neural Language Models
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• We can view BOW as a attending to all previous tokens equally


• So can rewrite our simple example MLP using a uniform distribution





• What if we want to attend to past tokens in an adaptive way? 


- We need a way to do weighted processing context


- Can achieve this if we can adapt the distribution based on context

p( j) =
1
i

, j = 1,…, i

h = tanh(W′￼∑i
j=1 p( j)ϕ(xj) + b′￼)

p(xi+1 |x1, …, xi) = softmax(W′￼′￼h + b′￼′￼)

A Uniform Distribution Over Past Words
Bag of Words
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• We can view BOW as a attending to all previous tokens equally


• So can rewrite our simple example MLP using a uniform distribution





• What if we want to attend to past tokens in an adaptive way? 


- We need a way to do weighted processing of context to represent that 
different words depend on context differently 

- This weighted processing must reflect ordering

p( j) =
1
i

, j = 1,…, i

h = tanh(W′￼∑i
j=1 p( j)ϕ(xj) + b′￼)

p(xi+1 |x1, …, xi) = softmax(W′￼′￼h + b′￼′￼)

A Uniform Distribution Over Past Words
Bag of Words
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• An architecture that functions similar to a soft query-key-value 
dictionary lookup


• Given a query  and a key-value dictionary 
where , 


1. Compute a probability distribution over dictionary entries





2. Output  is weighted average of values: 

q ∈ ℝdk {(k(i), v(i))}N
i=1

k(i) ∈ ℝdk v(i) ∈ ℝdv

ai = q ⋅ k(i) , p(i) = softmax(a)

z ∈ ℝdv z =
N

∑
i=1

p(i)v(i)

Attention
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• Attention where the query, keys, and values come from the same input


• Given a set of vectors  and a query position  we 
want to create a weighted sum of all vectors


1. Compute query, keys, and values vectors via linear transformation





2. Compute a probability distribution over dictionary entries





3. Output  is weighted average of values: 

{x(1), …, x(N)} j ∈ 1,…, N

q = Wqx( j) k(i) = Wkx(i) v(i) = Wvx(i)

ai = q ⋅ k(i) , p(i) = softmax(a)

z ∈ ℝdv z =
N

∑
i=1

p(i)v(i)

Self-attention
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• Computing attention using loops is crazy slow → it is critical to 
do everything with a few matrix multiplications by packing all 
keys and values in matrices  and 


• We usually compute for multiple queries , resulting in multiple 
outputs 


• Finally, it is common to divide by  because the dot-product 
is likely to get large in relation the key dimensionality


K V

Q
Z

dk

SelfAttn(Q, K, V) = Z = softmax(QK/ dk)V

More Important Details
Self-attention
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• Reminder, this is the simple BOW LM we showed 
earlier





• We can easily plug in self-attention to create a 
weighted processing of the context


• The query is computed from the most recent token


• Keys and values are computed from entire context 
(i.e., all previous tokens)


• Did we solve the issues with BOW?


- ✅  Words can’t depend on context differently


- ❌  Attention is order invariant

p( j) =
1
i

, j = 1,…, i

h = tanh(W′￼∑i
j=1 p( j)ϕ(xj) + b′￼)

p(xi+1 |x1, …, xi) = softmax(W′￼′￼h + b′￼′￼)

From BOW to Self-attention
LM with Self-attention

19

q = Wqϕ(xi)
K = Wk[ϕ(x1)⋯ϕ(xi)]
V = Wv[ϕ(x1)⋯ϕ(xi)]
z = SelfAttn(q, K, V)
h = W′￼′￼tanh(W′￼z + b′￼) + b′￼′￼

p(xi+1 |x1, …, xi) = softmax(h)



• Idea: let’s mark positions


• Learning will figure out what how to use them


• Simple version: learnable embeddings 


• More advanced: fixed embeddings, where 
values determined by sine waves, with 
different frequency and offset of each 
dimensions





• Either way, add them to token embeddings

ϕp(i)

Self-attention with Positional Embeddings
Marking Positions 
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xj = ϕ(xj) + ϕp( j), j = 1,…, i
q = Wqxi

K = Wk[x1⋯xi]
V = Wv[x1⋯xi]
z = SelfAttn(q, K, V)
h = W′￼′￼tanh(W′￼z + b′￼) + b′￼′￼

p(xi+1 |x1, …, xi) = softmax(h)



• Did we solve the issues with 
BOW?


- ✅ Words can’t depend on 
context differently


- ✅ Attention is order 
invariant


• Let’s make it more expressive!


🚀

Self-attention LM
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xj = ϕ(xj) + ϕp( j), j = 1,…, i
q = Wqxi

K = Wk[x1⋯xi]
V = Wv[x1⋯xi]
z = SelfAttn(q, K, V)
h = W′￼′￼tanh(W′￼z + b′￼) + b′￼′￼

p(xi+1 |x1, …, xi) = softmax(h)



• Words need to 
attend to different 
elements in context


• But attention just 
does weighted 
average


• So: add more 
attention heads


• Let  be the number 
of attention heads

L

Multiple Attention Heads
Self-attention LM

22

xj = ϕ(xj) + ϕp( j), j = 1,…, i

q(l) = W(l)
q xi

K(l) = W(l)
k [x1⋯xi]

V(l) = W(l)
v [x1⋯xi]

z = [SelfAttn(q(1), K(1), V(1)); ⋯; SelfAttn(q(L), K(L), V(L))]
h = W′￼′￼tanh(W′￼z + b′￼) + b′￼′￼

p(xi+1 |x1, …, xi) = softmax(h)



• Switch activation to  (Gaussian Error 
Linear Unit)


• Residual connection: shown to help with training 
very deep networks


• LayerNorm ( ): shown to improve performance


- Post-norm (original and here)





- Pre-norm (modern)


GELU

LN

b = Module(LN(a)) + a

b = LN(Module(a) + a)

Add Neural Network Tricks
Self-attention LM
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xj = ϕ(xj) + ϕp( j), j = 1,…, i

q(l) = W(l)
q xi

K(l) = W(l)
k [x1⋯xi]

V(l) = W(l)
v [x1⋯xi]

z = LN([SelfAttn(q(1), K(1), V(1)); ⋯;
SelfAttn(q(L), K(L), V(L))] + xi)

h = LN(W′￼′￼GELU(W′￼z + b′￼) + b′￼′￼+ z)
p(xi+1 |x1, …, xi) = softmax(h)



• Abstract the whole computation as a Transformer block


• And stack it

Abstract and Stack It
Self-attention LM

24

TransformerBlockk(u1, …, ui) xi = ϕ(xi) + ϕp(i)

q(l) = W(l)
q ui h1

i = TransformerBlock1(x1, …, xi)

K(l) = W(l)
k [u1⋯ui] h2

i = TransformerBlock2(h1
1, …, h1

i )

V(l) = W(l)
v [u1⋯ui] …

z = LN([SelfAttn(q(1), K(1), V(1)); ⋯; hk
i = TransformerBlockk(hk−1

1 , …, hk−1
i )

SelfAttn(q(L), K(L), V(L))] + ui) …
hk

i = LN(W′￼′￼GELU(W′￼z + b′￼) + b′￼′￼+ z) hK
i = TransformerBlockK(hK−1

1 , …, hK−1
i )

p(xi+1 |x1, …, xi) = softmax(W𝒱hK
i )



• A variable length architecture


- Was not the first architecture 
to do that


- But we are not following the 
chronological order of events


• Key concept: self-attention 

• Quickly became maybe the 
most dominant architecture 


- Try to think why

Transformers

25

Provided proper attribution is provided, Google hereby grants permission to
reproduce the tables and figures in this paper solely for use in journalistic or

scholarly works.
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Abstract

The dominant sequence transduction models are based on complex recurrent or
convolutional neural networks that include an encoder and a decoder. The best
performing models also connect the encoder and decoder through an attention
mechanism. We propose a new simple network architecture, the Transformer,
based solely on attention mechanisms, dispensing with recurrence and convolutions
entirely. Experiments on two machine translation tasks show these models to
be superior in quality while being more parallelizable and requiring significantly
less time to train. Our model achieves 28.4 BLEU on the WMT 2014 English-
to-German translation task, improving over the existing best results, including
ensembles, by over 2 BLEU. On the WMT 2014 English-to-French translation task,
our model establishes a new single-model state-of-the-art BLEU score of 41.8 after
training for 3.5 days on eight GPUs, a small fraction of the training costs of the
best models from the literature. We show that the Transformer generalizes well to
other tasks by applying it successfully to English constituency parsing both with
large and limited training data.

⇤Equal contribution. Listing order is random. Jakob proposed replacing RNNs with self-attention and started
the effort to evaluate this idea. Ashish, with Illia, designed and implemented the first Transformer models and
has been crucially involved in every aspect of this work. Noam proposed scaled dot-product attention, multi-head
attention and the parameter-free position representation and became the other person involved in nearly every
detail. Niki designed, implemented, tuned and evaluated countless model variants in our original codebase and
tensor2tensor. Llion also experimented with novel model variants, was responsible for our initial codebase, and
efficient inference and visualizations. Lukasz and Aidan spent countless long days designing various parts of and
implementing tensor2tensor, replacing our earlier codebase, greatly improving results and massively accelerating
our research.

†Work performed while at Google Brain.
‡Work performed while at Google Research.

31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.
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Decoder-only Variant
The Transformer
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Figure 1: The Transformer - model architecture.

around each of the sub-layers, followed by layer normalization. We also modify the self-attention
sub-layer in the decoder stack to prevent positions from attending to subsequent positions. This
masking, combined with fact that the output embeddings are offset by one position, ensures that the
predictions for position i can depend only on the known outputs at positions less than i.

3.2 Attention

An attention function can be described as mapping a query and a set of key-value pairs to an output,
where the query, keys, values, and output are all vectors. The output is computed as a weighted sum
of the values, where the weight assigned to each value is computed by a compatibility function of the
query with the corresponding key.

3.2.1 Scaled Dot-Product Attention

We call our particular attention "Scaled Dot-Product Attention" (Figure 2). The input consists of
queries and keys of dimension dk, and values of dimension dv . We compute the dot products of the
query with all keys, divide each by

p
dk, and apply a softmax function to obtain the weights on the

values.

In practice, we compute the attention function on a set of queries simultaneously, packed together
into a matrix Q. The keys and values are also packed together into matrices K and V . We compute
the matrix of outputs as:

Attention(Q,K, V ) = softmax(
QK

T

p
dk

)V (1)

3
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× K

[Vaswani et al. 2017]

SelfAttn(Q, K, V) = softmax(QK / dk)V

Self-attention reminder During learning, compute the whole 
sequence at ones by masking items 
you shouldn’t attend to in  — 
easy by setting  to 

softmax
softmax −∞

TransformerBlockk(u1, …, ui) xi = ϕ(xi) + ϕp(i)

q(l) = W(l)
q ui h1

i = TransformerBlock1(x1, …, xi)

K(l) = W(l)
k [u1⋯ui] h2

i = TransformerBlock2(h1
1, …, h1

i )

V(l) = W(l)
v [u1⋯ui] …

z = LN([SelfAttn(q(1), K(1), V(1)); ⋯; hk
i = TransformerBlockk(hk−1

1 , …, hk−1
i )

SelfAttn(q(L), K(L), V(L))] + ui) …
hk

i = LN(W′￼′￼GELU(W′￼z + b′￼) + b′￼′￼+ z) hK
i = TransformerBlockK(hK−1

1 , …, hK−1
i )

p(xi+1 |x1, …, xi) = softmax(W𝒱hK
i )



• For each time step:


- Input: previous word (and 
everything computed before)


- Output: probability 
distribution over the 
vocabulary

Shifted Outputs as Inputs
Transformer

27

<s> I love Lucy

</s>LucyloveI

Transformer



• Training loss is the per-token 
negative log likelihood:





• During training: we know all 
tokens


- So masked self-attention


- To account for ordering


• Transformers are very sensitive 
to learning rate schedule → 
linear warm up + cosine decay

ℒ = − log p(xi |x1, …, xi−1)

Language Model Training
Transformer

28



• Time and memory complexity


- Time: attention is quadratic  in sequence length 


- Memory: Need to keep almost all past activation for self-
attention


• Positional embeddings mean you can only handle positions up to 
the length you observed in training


• A lot of existing and ongoing work on both issues

O(n2) n

Issues
Transformer
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• Some complexities you will encounter:


- Masking self-attention


- Batching


- Learning rate sensitivity 

Technical Complexities
Transformer
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• Transformers were designed 
with hardware in mind


- Especially TPUs, but also 
GPUs


• Exceptionally designed for scale 
as far as hardware


• Turns out, also scale well for 
learning


• Unparalleled success in NLP, 
vision, speech, RL, science, and 
other areas

A Success Story
Transformers
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Natural Language
Transformers

32

Decoder-only 

GPT

Encoder-only 

BERT

Encoder-decoder 

T5



• ViT: cut image to patches


• Project each patch to a vector


• Treat them as token embeddings

Computer Vision
Transformers

33
[Dosovitskiy et al. 2020]



• Same as computer vision


• But: spectrograms instead of 
images


• The Whisper model

Speech
Transformers

34 [Radford et al. 2022]



• Decision Transformers 

• Inputs are action states and 
target values


• Value is (in a nutshell) how 
much reward you want to get


• Outputs are actions

Reinforcement Learning (RL)
Transformers

35

Decision Transformer: Reinforcement
Learning via Sequence Modeling

Lili Chen⇤,1, Kevin Lu⇤,1, Aravind Rajeswaran2, Kimin Lee1,
Aditya Grover2, Michael Laskin1, Pieter Abbeel1, Aravind Srinivas†,1, Igor Mordatch†,3

⇤equal contribution †equal advising
1UC Berkeley 2Facebook AI Research 3Google Brain

{lilichen, kzl}@berkeley.edu

Abstract

We introduce a framework that abstracts Reinforcement Learning (RL) as a se-
quence modeling problem. This allows us to draw upon the simplicity and scalabil-
ity of the Transformer architecture, and associated advances in language modeling
such as GPT-x and BERT. In particular, we present Decision Transformer, an
architecture that casts the problem of RL as conditional sequence modeling. Un-
like prior approaches to RL that fit value functions or compute policy gradients,
Decision Transformer simply outputs the optimal actions by leveraging a causally
masked Transformer. By conditioning an autoregressive model on the desired
return (reward), past states, and actions, our Decision Transformer model can gen-
erate future actions that achieve the desired return. Despite its simplicity, Decision
Transformer matches or exceeds the performance of state-of-the-art model-free
offline RL baselines on Atari, OpenAI Gym, and Key-to-Door tasks.

R s a

a

s

a

a

causal transformer
emb. + pos. enc.

linear decoder

. . .

21
return state action

. . .

^ R̂

Figure 1: Decision Transformer architecture1. States, actions, and returns are fed into modality-
specific linear embeddings and a positional episodic timestep encoding is added. Tokens are fed into
a GPT architecture which predicts actions autoregressively using a causal self-attention mask.

1Our code is available at: https://sites.google.com/berkeley.edu/decision-transformer
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• Take observations and 
commands, all tokenized


• Output continuous joint control 
actions 

Robotics
Transformers

36 [Brohan et al. 2023]



• Whatever you can tokenize, the Transformer will take


• What more: you can feed them all to the same model

Everything Everywhere All at Once
Transformers
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[image from: https://deepmind.google/discover/blog/rt-2-new-model-translates-vision-and-language-into-action/]

https://deepmind.google/discover/blog/rt-2-new-model-translates-vision-and-language-into-action/


• Some content was adapted from slides by Lucas Beyer


• We thank Greg Durrett, Ana Marasović, and Christian von der 
Weth for very helpful discussions.
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https://docs.google.com/presentation/d/1ZXFIhYczos679r70Yu8vV9uO6B1J0ztzeDxbnBxD1S0/edit#slide=id.g31364026ad_3_2

