Raw Data

Neural Language Models and Transformers

Cornell CS 5740: Natural Language Processing
Yoav Artzi, Spring 2023

1

Neural Language Models

 |LLMs so far: count-based estimates of probabilities

- Counts are brittle and generalize poorly, so we added
smoothing

* The quantity that we are focused on estimating (e.g., for tri-gram
model):

p(x) = Hp(xilxi_l,xl-_z), where xp, x_; = *,x;, € 7" U {STOP}
i=1

e Can we use neural networks for this task? What would it give us?
What are the costs?

Neural Language Models
A Very Simple Approach

 Instead of having count-based distributions, parameterize them

p(xl- | Xi_1>Xi_25 0)
* How would we model this with a neural network?

- Hint: so far, only learned about MLPs

Neural Language Models
A Very Simple Approach

* A simple MLP-ish model

p(x; = w|Xx;,_y,X;_y; 0) = softmax(y),,
y = b + Wx + Utanh(d + Hx)
X = [@(x;_1); P(x;_5)]
where ¢ is an embedding function, and 8 = (b,d, W, U, H, C, ¢)

« The parameters 0 are estimated by maximizing the log probability
of the data

e During inference, you compute the neural network every time you
need a value from the probability distribution

4

[Bengio et al. 2003]

Neural Language Models
A Very Simple Approach

* A simple MLP-ish model
p(x; = w|Xx,_1, x;_r; 0) = softmax(y),,
y = b + Wx + Utanh(d + Hx)
X = [p(x;_1); P(x;_o)]
where ¢ is an embedding function, and € = (b,d, W, U, H, C, ¢)

* What does it give us? Think smoothing ...

Neural Language Models
A Very Simple Approach

* A simple MLP-ish model
p(x; = w|Xx,_1, x;_r; 0) = softmax(y),,
y = b + Wx + Utanh(d + Hx)
X = [p(x;_1); P(x;_o)]
where ¢ is an embedding function, and € = (b,d, W, U, H, C, ¢)

* What does it give us? Think smoothing ...

exp(y,,)

softmax(y),, =
% <, EXP0)

- What does the softmax do the smoothing problem?

 What are the costs?

Neural Language Models

 The MLP approach can help with smoothing at some costs
* But essentially makes the same modeling choices
- Assuming a finite horizon — the Markov assumption

- We adopted this assumption because of sparsity (i.e.,
smoothing) challenges

* Can neural networks allow us to revisit these assumptions?

Neural Language Models

Revisiting the Markov Assumption

The Markov assumption was critical for generalization

But: it’s terrible for natural language!
- “| ate a strawberry with some cream”

- “| ate a strawberry that was picked in the field by the best
farmer in the world with some cream”

* Dependencies can bridge arbitrarily long linear distances

- We saw that already with word2vec

It get even worse beyond the single sentence

8

Neural Language Models
An MLP with No Markov Assumption

* Without the Markov assumption, the model is
n

p® = [[pGilxi, ki)
i=1

* We need to model the parameterized distribution

P&y | X 00X 0)

- Note: shifted the index here, because it will make things nicer
later on — just a notation change

 How can we do this with the tools we already know?

9

Neural Language Models
An MLP with No Markov Assumption

* We need to model the parameterized distribution

P(xi+1 |x1, cees XS 0)
* We can just treat the context as a bag of words
- Then it doesn’t matter how long it is

- A very simple example (two layer MLP)
h = tanh(W'L ZJ’;I ¢(x;) + b’)
P 1] xp, ..., x;) = softmax(W”h + b”)

10

Neural Language Models
An MLP with No Markov Assumption

 We can just treat the context as a bag-of-words, for example:
/ 1 . /
h = tanh(W'- Z]l.zl P(x) +b’)

P 1| xp, ..., x;) = softmax(W"”h + b”)

e Why is this a terrible idea?

11

Neural Language Models
An MLP with No Markov Assumption

* We can just treat the context as a bag-of-words, for example:
h = tanh(W'= 3 ¢(x) +b)
p(xiq | Xy, ..., x;) = softmax(W"”h + b”)
* Why is this a terrible idea?
- Order matters a lot in language .
- But it worked so well for text categorization ... &

- What may work for tasks that just require focusing on salient words
(e.g., topic categorization), is not sufficient for language models
(i.e., next-word prediction)

12

Neural Language Models
Bag of Words

« BOW can handle arbitrary length &
» But losses any notion of order @
* Furthermore, dependencies are complex @

- Not following linear order

- Importance follow complex patterns

» “| ate a strawberry that was picked in the field
by the best farmer in the world with some
cream”

> “| ate a strawberry that was picked in the field
by the best farmer in the world with clippers”

- The model needs to focus on different parts in
the context to predict different words

13

Bag of Words

A Uniform Distribution Over Past Words

* We can view BOW as a attending to all previous tokens equally

e So can rewrite our simple example MLP using a uniform distribution

N . .
p(])=7 , J=1,...,1

h = tanh(W's’_, p(j)d(x) + b’)
p(Xiiq Xy, ..., x;) = softmax(W"h + b”)

 What if we want to attend to past tokens in an adaptive way?

14

Bag of Words

A Uniform Distribution Over Past Words

* We can view BOW as a attending to all previous tokens equally

e So can rewrite our simple example MLP using a uniform distribution

L1 . .
p(])=7 , j=1,...,1

h = tanh(W'5._ p(j)b(x) + b))
pxi i |xg, ..., x;) = softmax(W"h + b”)

 What if we want to attend to past tokens in an adaptive way?

- We need a way to do weighted processing of context to represent that
different words depend on context differently

- This weighted processing must reflect ordering

15

Attention

* An architecture that functions similar to a soft query-key-value
dictionary lookup

| J - (i) (O\IN
» Given a query q € R% and a key-value dictionary {(k 2 V(’))}i=1
where k¥ € R%, v\) € R%

1. Compute a probability distribution over dictionary entries
a;=q-k® , p(i) = softmax(a)
N .
2. Output z € R% is weighted average of values: Z = Zp(i)v(’)

i=1

16

Self-attention

« Attention where the query, keys, and values come from the same input

« Given a set of vectors {X(l),x™Y and a query positionj € 1,..., N we
want to create a weighted sum of all vectors

1. Compute query, keys, and values vectors via linear transformation
q= qu(j) k® = WkX(i) v = va(i)
2. Compute a probability distribution over dictionary entries
a,=q- k® , p(i) = softmax(a)
N .
3. Output z € R% is weighted average of values: Z = Z p(i)v?

i=1

17

Self-attention

More Important Details

« Computing attention using loops is crazy slow — it is critical to
do everything with a few matrix multiplications by packing all

keys and values in matrices K and V

» We usually compute for multiple queries Q, resulting in multiple
outputs Z

. Finally, it is common to divide by 4/d, because the dot-product
Is likely to get large in relation the key dimensionality

SelfAttn(Q, K, V) = Z = softmax(QK/4/d,)V

18

LM with Self-attention

From BOW to Self-attention

* Reminder, this is the simple BOW LM we showed

earlier
p(j) =% L j= L
h = tanh(W'S_ p(d(x) +b) q = W (x))
p(Xiyq | x5 ..., x;) = softmax(W"h + b”) K = Wk[¢(x1)...¢(xi)]
" weighied procssng of tha context o V= W,[(x) ()]

« The query is computed from the most recent token Z = SelfAttn(q, K,V)

» Keys and values are computed from entire context h = W”tanh(W’z + b') + b”
(i.e., all previous tokens)

P 1| x, ..., x;) = softmax(h)
* Did we solve the issues with BOW?
- Words can’t depend on context differently

-)(Attention is order invariant

19

Marking Positions

Self-attention with Positional Embeddings

» |ldea: let’s mark positions

« Learning will figure out what how to use them

« Simple version: learnable embeddings gbp(i)

X = B05) + Gy = Loy

* More advanced: fixed embeddings, where

values determined by sine waves, with q= Wle-

different frequency and offset of each

dimensions K =W,/[x,-x/]
V = WV[XI.”Xi]

z = SelfAttn(q, K, V)
h = W’tanh(W’z + b’) + b”
Py | xq, ..., x;) = softmax(h)

 Either way, add them to token embeddings

20

Self-attention LM

 Did we solve the issues with
BOW?

- 4 Words can’t depend on

=)+ d,().J=1,....1
context differently X; = ¢ + (1), J !

q= qui
- (4 Attention is order K =W,[X,-X]
Invariant V=W,[xX]

z = SelfAttn(q, K, V)
h = W’tanh(W’z + b’) + b”
Py | xq, ..., x;) = softmax(h)

* Let’s make it more expressive!

21

Self-attention LM

Multiple Attention Heads

 Words need to
attend to different
elements in context

e But attention just
does weighted
average

e So: add more
attention heads

e Let L be the number
of attention heads

X; =)+ d,(j)j=1,....i

q® = Wi,

KO = W]({l)[xl---xi]

VO =W0[x,..-x;]

z = [SelfAttn(qV, KD, VD) ...; SelfAttn(q®), K&, V)]

h = W”tanh(W'z + b’) + b”
Py | x5 ..., x;) = softmax(h)

22

Self-attention LM
Add Neural Network Tricks

 Switch activation to GELU (Gaussian Error
Linear Unit)

Figure 1: The GELU (u = 0,0 = 1), ReLU, and ELU
(a=1).

* Residual connection: shown to help with training
very deep networks

 LayerNorm (LN): shown to improve performance
- Post-norm (original and here)
b = Module(LN(a)) + a
- Pre-norm (modern)

b = LN(Module(a) + a)

23

X; = P(x) + @,(j),j = 1,....0

q? = W(ql)xl-

KO = W,(Cl)[xl"'xi]

v = ng)[x X

z = LN([SelfAttn(qV, KO, vDy; ...
SelfAttn(qY, KO, V&)] + x,)

h =LN(W'GELUW'z+Db’)+b"+z)
Py | xp5 ..., x;) = softmax(h)

Self-attention LM

Abstract and Stack It

* Abstract the whole computation as a Transformer block

e And stack it

TransformerBlockX(uy, ..., u,) X; = ¢(x;) + ¢,(i)

q) = W(ql)ul- h! = TransformerBlock'(x,, ..., X;)

K® = W,il)[ul---ul-] h? = TransformerBlock*(hy, ..., h})

VO = WOl,-.u;]

z = LN([SelfAttn(q", KD, VD) ... h;‘ = TransformerBlockk(hll‘_l, e h%(_l)
SelfAttn(qD, KP, V)] +u) ..

hi.‘ = LN(W'GELUW'z+ b))+ b"+2) th = TransformerBlockK(hIf_l, e hiK_l)

P Xy, .00 x) = softmax(W%th)

24

Transformers

* A variable length architecture

- Was not the first architecture
to do that

Attention Is All You Need

- But we are not following the
chronological order of events

Ashish Vaswani* Noam Shazeer* Niki Parmar* Jakob Uszkoreit*
Google Brain Google Brain Google Research Google Research
avaswani@google.com noam@google.com nikip@google.com usz@google.com

* Key CO n C e pt : Se If- atte nti O n Llion Jones* Aidan N. Gomez* Lukasz Kaiser”

Google Research University of Toronto Google Brain
1lion@google.com aidan@cs.toronto.edu lukaszkaiser@google.com

* Quickly became maybe the 1150 P o
most dominant architecture

- Try to think why

25

[Vaswani et al. 2017]

The Transformer

Decoder-only Variant
Output
Probafbilities
| Softmax |}
)
{ Linear |}
TransformerBlockX(u R | P X =¢x)+ ¢ (i
(u,) i =) + ¢,00) (=)
q¥ = Wy, h! = TransformerBlock'(x,, ..., X; Feod
) — () 2) 21 1 Forward
KY = Wk [u;---u] h: = TransformerBlock“(hy, ..., h.) T
VO = W(l)[ul---u-] [Add & Norm J—~
Y : Masked X K
z = LN([SelfAttn(q", KD, vy ... h! = TransformerBlock*(hf~!, ..., h¥™) Multi-Head
Attention
SelfAttn(q'©, KO, V)] + u)) 1 7
k _ " ’ ’ " K __ K, K-1 K-1 _ _J)
h; = LN(W'GELU(W'z+b’) + b"” + z) h; = TransformerBlock™(h™", ..., h;*™")
Positional
P(iy1 1%, ..., %) = softmax(W” hf) ¢ Encoding
Output
i . : : : Embeddi
Self-attention reminder During learning, compute the whole = eT -
SelfAttn(Q. K. V) ftmax(QK/x/Z)V sequence at ones by masking items o
n 9 9 =) H
- softmax(QK/\/AIV. |\ | shouldn't attend to in softmax — Shito ot
easy by setting softmax to — oo

26 [Vaswani et al. 2017]

Transformer
Shifted Outputs as Inputs

* For each time step:

e

- Input: previous word (and
everything computed before)

- Qutput: probability
distribution over the
vocabulary

27

Transformer

Language Model Training

* Training loss is the per-token
negative log likelihood:

Self-Attention Masked Self-Attention

Z = —logp(x;|xp, ..., x;_1) (_] []

* During training: we know all
tokens

- So masked self-attention
- To account for ordering

5 0.00015 1

0.00010 1

* Transformers are very sensitive
to learning rate schedule — o000 >~
linear warm up + cosine decay Step

28

Transformer

Issues

 Time and memory complexity

- Time: attention is quadratic O(n?) in sequence length n

- Memory: Need to keep almost all past activation for self-
attention

e Positional embeddings mean you can only handle positions up to
the length you observed in training

* A lot of existing and ongoing work on both issues

29

Transformer

Technical Complexities

 Some complexities you will encounter:
- Masking self-attention
- Batching

- Learning rate sensitivity

30

Transformers
A Success Story

* Transformers were designed
with hardware in mind

- Especially TPUs, but also
GPUs

« Exceptionally designed for scale
as far as hardware

 Turns out, also scale well for
learning

* Unparalleled success in NLP,
vision, speech, RL, science, and
other areas

31

Transformers

Natural Language

Decoder-only Encoder-only

GPT BERT

[sat_] [*] [*] [sat_] [*] [the_] [*]
Output

Probabilities

Add & Norm
Feed
e
N —

Feed
Forward N>
~ f->| Add & Norm |
Ty

Masked Attention
Muiti-Head +)
Attention
[) | ———
" Positional ®_<>
@ Positional Encoding
Encoding —
Output Embedding
Embedding I
Outputs Inputs
(shifted right)
[START] [The] [cat] [The] [cat] [MASK] [on] [MASK] [mat]

32

Translate EN-DE:
Summarize:

Is this toxic:

Encoder-decoder

Das ist gut.

5

A storm in Attala caused 6 victims.

This is not toxic.

OCutput
Probabilities

Feed
Forward

AGT& Nom

Mult-Head
Attantion

Add & Nom
Muti-Head
Attentior

Multi-Head
Aftention

This is good.
state authorities dispatched..

You look beautiful today!

Transformers

Computer Vision

e VIT: cut image to patches

Project each patch to a vector

e Treat them as token embeddings

Class
Bird
Ball

MLP \
Car Head
e

Transformer Encoder

|
)0 0 0 D))

Lmear PI‘O_]CC[IOII of Flattened Patches

Patch + Position
Embeddi ng

* Extra

[clas] bdd

SEE T] |,|
HE W -

33

[Dosovitskiy et al. 2020]

Transformers
Speech

e« Same as computer vision

e But: spectrograms instead of —

N
. (0.0; The quick brown -
II I lag eS Encoder Block T
Encoder Block b Decoder Block
L
 The Whisper model :
. E— Decoder Block
c
Encoder Block 2
[
S| .
76 .
w
Encoder Block 8
T bl Decoder Block
@ nnnnnnnnnn
Positional Encoding — Decoder Block

34

[Radford et al. 2022]

Transformers

Reinforcement Learning (RL)

 Decision Transformers

* Inputs are action states and
target values

e Value is (in a nutshell) how . % %

m UCh reward you Want -to get Causal transformer

éu@u@ué

 Qutputs are actions 21 -

@

35

[Chen et al. 2021]

Transformers

Robotics
« Take observations and Q: What should RT-2
. the robot do to
commands, all tokenized P A coo

e Qutput continuous joint control = 3 .

. | BN
actions] :..‘ = 1 111
A

| AT =[0.1, -0.2, 0]

[A: = 132 114 128 5 25 156} = [10°, 25°, -7°]

. A R
De-tokenize |

Robot action

36

[Brohan et al. 2023]

Transformers
Everything Everywhere All at Once

* Whatever you can tokenize, the Transformer will take

 What more: you can feed them all to the same model

37
[image from: https://deepmind.google/discover/blog/rt-2-new-model-translates-vision-and-language-into-action/]

https://deepmind.google/discover/blog/rt-2-new-model-translates-vision-and-language-into-action/

Acknowledgements

 Some content was adapted from slides by Lucas Beyer

* We thank Greg Durrett, Ana Marasovi¢, and Christian von der
Weth for very helpful discussions.

38

https://docs.google.com/presentation/d/1ZXFIhYczos679r70Yu8vV9uO6B1J0ztzeDxbnBxD1S0/edit#slide=id.g31364026ad_3_2

