Raw Data

Tokenization

Cornell CS 5740: Natural Language Processing
Yoav Artzi, Spring 2023

Tokenization

« How do we represent an input text?

Tokenization: splitting a string into a sequence of tokens

- Given a piece of text X, we said it’s a sequence (X, ..., X,)

» But how do you get from a string to (xy, ..., x,,)?
- So far: we split to “words” according to white spaces

“I love Lucy, but adore Ethel”

X = (I, Love, Lucy, ,, but, adore, Ethel)

- Actually, even here we can see it’'s more complex. Why?

2

Tokenization

“I love Lucy, but adore Ethel”

X = (I, Love, Lucy, ,, but, adore, Ethel)

* S0, tokenization is not simple, and tokenizers require may
specialized rules

* Such as, what will we do with the following strings:

- *amazing!”, “state-of-the-art”, “un-thinkable”, “prize-winning”,
“aren’t”, “O’Neill”

- Some languages don’t even use spaces to mark word boundaries!

e Check out spaCy’s tokenizers! (https://spacy.io/)

3

https://spacy.io/

Tokenization
Handling Unknown Words

 What happens when we encounter a word that we have never
seen in our training data?

- With word-level tokenization, not much we can do

- Except assigning to it a special <UNK> token, or maybe do
something a bit smarter with some clustering

> Don’t forget to use UNK during training — why?
- Why this is bad?

Tokenization

Limitations of <UNK>

* Generally, we lose most of the information the word conveys @

e Especially hurts in texts/languages with many rare words/entities

The chapel is sometimes referred to as "Hen Gapel Lligwy"
("hen" being the Welsh word for "old" and "capel" meaning
"chapel).

The chapel is sometimes referred to as " Hen <unk> <unk> "
(" hen " being the Welsh word for " old " and " <unk> "
meaning " chapel ").

Tokenization

Other Limitations

 Word-level tokenization treats different forms of the same root as
completely separate (e.g., “open”, “opened”, “opens”, “opening”,
etc)

* This means separate features or embeddings!

 Why is this a problem? Especially with limited data?

Tokenization

Other Limitations

» Word-level tokenization treats different forms of the same root as
completely separate (e.g., “open”, “opened”, “opens”, “opening”,
etc)

* This means separate features or embeddings!

 Why is this a problem? Especially with limited data?

* We can use pre-trained embeddings (e.g., word2vec)

- S0 we can learn similar embeddings given enough data

- But still separate parameters, and will still hurt with rare words

Character-level Tokenization

e Let’s reconsider how we split:
- Instead of white spaces, just split to characters

* Impact on vocabulary size? Unknown word problem? Other input
properties?

Character-level Tokenization

e Let’s reconsider how we split:
- Instead of white spaces, just split to characters

* Impact on vocabulary size? Unknown word problem? Other input
properties?

- Small vocabulary: just the number of unique characters in the training
datal

- Much longer input sequences

- Need to learn from scratch how to combine characters to recover word
meaning

» Will BOW/NBOW models work?

9

Subword Tokenization

° “WO rd ”-|eVG|E issues Wlth un kn own wo I’dS Neural Machine Translation of Rare Words with Subword Units
and information sharing, and gets

com p | ex faSt Rico Sennrich and Barry Haddow and Alexandra Birch
School of Informatics, University of Edinburgh
{rico.sennrich,a.birch}@ed.ac.uk,bhaddowl@inf.ed.ac.uk

- Also, fits poorly to some languages

» Character-level: long sequences, the
model needs to do a lot of heavy lifting in
representing that is encoded in plain-sight

The main motivation behind this
paper is that the translation of
some words is transparent in that
they are translatable by a
competent translator even if they
are novel to him or her, based on a
translation of known subword units
such as morphemes or phonemes.

e Let’s find a middle ground!

» Subword tokenization first developed for
machine translations

- Based on byte pair encoding (Gage,
1994)

* Now, used everywhere

10

Byte Pair Encoding (BPE)

« 7 « All characters in the training data
(as base tokens)

 For k steps:

Tokenize the data, taking the longest
prefix each time

Count the frequency of adjacent token
pairs in the data

Choose the pair {/, r) that occurs most
frequently

Add the pair to the vocabulary as a
new token 7" «— 7" U {Ir}

e Return 7

11

Example from: https://huggingface.co/docs/transformers/tokenizer summary

https://huggingface.co/docs/transformers/tokenizer_summary

Byte Pair Encoding (BPE)

« 7 « All characters in the training data
(as base tokens)

 For k steps:

Tokenize the data, taking the longest
prefix each time

Count the frequency of adjacent token
pairs in the data

Choose the pair {/, r) that occurs most
frequently

Add the pair to the vocabulary as a
new token 7" «— 7" U {Ir}

e Return 7

12

Word Frequency
hug 10
pug S

pun 12
bun

hugs

v

7 = {b,g,h,n,p,s,u}

Example from:

h

ttps://huggingface.co/docs/transformers/tokenizer summar

https://huggingface.co/docs/transformers/tokenizer_summary

Byte Pair Encoding (BPE)

7 ={b,g,h,n,p,s,u}

« 7 « All characters in the training data
(as base tokens)

Word Frequency
 For k steps: h+u+g 10
- Tokenize the data, taking the longest p+u+g S
prefix each time P+U-+N 19
- Count the frequency of adjacent token b+u+n 4
pairs in the data h+u+g+s 5

- Choose the pair (/, r) that occurs most
frequently

- Add the pair to the vocabulary as a
new token 7" «— 7" U {Ir}

e Return 7

13
Example from: https://huggingface.co/docs/transformers/tokenizer summary

https://huggingface.co/docs/transformers/tokenizer_summary

Byte Pair Encoding (BPE)

« 7/ « All characters in the training data 7 = {b’ 9, h,n, P,s,u}
(as base tokens)
Word Frequency
 For k steps: htu+g 10
- Tokenize the data, taking the longest p+u+g 9
prefix each time D-+U-+N 12
- Count the frequency of adjacent token b+u+n 4
pairs in the data h-+U+g+s 5
- Choose the pair ([, r) that occurs most Pair Frequency
frequently U+g 20
- Add the pair to the vocabulary as a p+u 17
new token 7" «— 7" U {Ir} u+n 16
h+u 15
e Return 7/
g+s 5

14 .
Example from: https://huggingface.co/docs/transformers/tokenizer summary

https://huggingface.co/docs/transformers/tokenizer_summary

Byte Pair Encoding (BPE)

« 7/ « All characters in the training data 7 = {b’ 9, h,n, P,s,u}
(as base tokens)
Word Frequency
 For k steps: htu+g 10
- Tokenize the data, taking the longest p+u+g 9
prefix each time D-+U-+N 12
- Count the frequency of adjacent token b+u+n 4
pairs in the data h-+U+g+s 5
- Choose the pair ([, r) that occurs most Pair Frequency
frequently U+g 20
- Add the pair to the vocabulary as a p+u 17
new token 7" «— 7" U {Ir} u+n 16
h+u 15
e Return 7/
g+s 5

15 .
Example from: https://huggingface.co/docs/transformers/tokenizer summary

https://huggingface.co/docs/transformers/tokenizer_summary

Byte Pair Encoding (BPE)

« 7/ « All characters in the training data 7 = {bv 9, h,n, P, S, U, ug}
(as base tokens)
Word Frequency
 For k steps: htu+g 10
- Tokenize the data, taking the longest p+u+g 9
prefix each time D-+U-+N 12
- Count the frequency of adjacent token b+u+n 4
pairs in the data h-+U+g+s 5
- Choose the pair ([, r) that occurs most Pair Frequency
frequently U+g 20
- Add the pair to the vocabulary as a p+u 17
new token 7" <« 7" U {Ir} u+n 16
h+u 15
e Return 7/
g+s 5

16 .
Example from: https://huggingface.co/docs/transformers/tokenizer summary

https://huggingface.co/docs/transformers/tokenizer_summary

Byte Pair Encoding (BPE)

« 7" « All characters in the training data 7 ={b,g,h,n,p,s,u,ug}
(as base tokens)
Word Frequency
 For k steps: heug 10
- Tokenize the data, taking the longest p+ug 9
prefix each time D+U-+N 19
- Count the frequency of adjacent token b+u+n
pairs in the data h+ug+s

- Choose the pair (/, r) that occurs most
frequently

- Add the pair to the vocabulary as a
new token 7" «— 7" U {Ir}

e Return 7

17
Example from: https://huggingface.co/docs/transformers/tokenizer summary

https://huggingface.co/docs/transformers/tokenizer_summary

Byte Pair Encoding (BPE)

« 7/ « All characters in the training data 7 = {bv 9, h,n, P, S, U, ug}
(as base tokens)
Word Frequency
 For k steps: htug 10
- Tokenize the data, taking the longest p+ug S
prefix each time D-+U-+N 12
- Count the frequency of adjacent token b+u+n 4
pairs in the data h+ug+s 5
- Choose the pair (/, r) that occurs most Pair Frequency
frequently U+n 16
- Add the pair to the vocabulary as a h+ug 15
new token 7" « 7" U {lr} p+U 12
+U S
e Return 7° e
ug+s)

18 .
Example from: https://huggingface.co/docs/transformers/tokenizer summary

https://huggingface.co/docs/transformers/tokenizer_summary

Byte Pair Encoding (BPE)

« 7 « All characters in the training data
(as base tokens)

 For k steps:

Tokenize the data, taking the longest
prefix each time

Count the frequency of adjacent token
pairs in the data

Choose the pair {/, r) that occurs most
frequently

Add the pair to the vocabulary as a
new token 7" «— 7" U {Ir}

e Return 77

19

7 = {b,g,h,n,p,s,u,ug,un, hug}

Word Frequency
hug 10
p+ug 5
p+un 12
b+un

hug+s

Example from: https://huggingface.co/docs/transformers/tokenizer summary

https://huggingface.co/docs/transformers/tokenizer_summary

Byte Pair Encoding (BPE)

* To avoid <UNK> altogether, must add all possible characters/
symbols

- Oops: there are ~138K unicode symbols
* Instead, use bytes!

- GPT-2 does this with some rules to prevent certain types of
merges

- Commonly vocabulary sizes are 32-64K

* Package to help with tokenization: tokenizers from Hugging Face
(https://github.com/huggingface/tokenizers)

20

https://github.com/huggingface/tokenizers

Other Subword Encoding Schemes

« WordPiece (Schuster et al., 2012): merge to increase likelihood
as measured by a language model (vs. frequency as in BPE)

» SentencePiece (Kudo et al., 2018): can do subword tokenization
without pre-tokenization (i.e., using white spaces)

- Good for words without such word boundaries

- Although pre-tokenization still usually helps

21

Subword Tokenization
What do Subwords Capture?

e Subwords can be arbitrary strings
* But can also be meaning-bearing units
- Can capture morphemes (the smallest meaning-bearing unit)
> “unlikeliest” — [un-, likely, -est]
- Can separate single form from plural
- etc

* Importantly: this arises from the data

22

Subword Tokenization

Limitations

* Does not work well with languages that have more complex
morphology (word forms), such as Turkish and Arabic

* Pre-tokenization using spaces doesn’t work on some languages
(e.g., Chinese and Thai don’t use spaces between words)

* There are other recipes:
- Tokenizer free, just work with bytes (e.g., ByT)5)

- Other learning techniques with soft tokenization (e.g.,
Charformer)

23

Acknowledgements

* The slides in this deck were adapted from UMass Amherst CS
685 by Mohit lyyer

 Some modifications followed on slides form University of Utah
CS 6340 by Ana Marasovic

24

