
Cornell CS 5740: Natural Language Processing
Yoav Artzi, Spring 2023

Raw Data
Tokenization

1

• How do we represent an input text?

Tokenization: splitting a string into a sequence of tokens

• Given a piece of text , we said it’s a sequence

• But how do you get from a string to ?

- So far: we split to “words” according to white spaces

“I love Lucy, but adore Ethel”

- Actually, even here we can see it’s more complex. Why?

x̄ ⟨x1, …, xn⟩

⟨x1, …, xn⟩

x̄ = ⟨I, Love, Lucy, ,, but, adore, Ethel⟩

Tokenization

2

“I love Lucy, but adore Ethel”

• So, tokenization is not simple, and tokenizers require may
specialized rules

• Such as, what will we do with the following strings:

- “amazing!”, “state-of-the-art”, “un-thinkable”, “prize-winning”,
“aren’t”, “O’Neill”

- Some languages don’t even use spaces to mark word boundaries!

• Check out spaCy’s tokenizers! (https://spacy.io/)

x̄ = ⟨I, Love, Lucy, ,, but, adore, Ethel⟩

Tokenization

3

https://spacy.io/

• What happens when we encounter a word that we have never
seen in our training data?

- With word-level tokenization, not much we can do

- Except assigning to it a special <UNK> token, or maybe do
something a bit smarter with some clustering

‣ Don’t forget to use UNK during training — why?

- Why this is bad?

Handling Unknown Words
Tokenization

4

• Generally, we lose most of the information the word conveys 😢

• Especially hurts in texts/languages with many rare words/entities

The chapel is sometimes referred to as "Hen Gapel Lligwy"
("hen" being the Welsh word for "old" and "capel" meaning
"chapel").

The chapel is sometimes referred to as " Hen <unk> <unk> "
(" hen " being the Welsh word for " old " and " <unk> "
meaning " chapel ").

Limitations of <UNK>
Tokenization

5

• Word-level tokenization treats different forms of the same root as
completely separate (e.g., “open”, “opened”, “opens”, “opening”,
etc)

• This means separate features or embeddings!

• Why is this a problem? Especially with limited data?

Other Limitations
Tokenization

6

• Word-level tokenization treats different forms of the same root as
completely separate (e.g., “open”, “opened”, “opens”, “opening”,
etc)

• This means separate features or embeddings!

• Why is this a problem? Especially with limited data?

• We can use pre-trained embeddings (e.g., word2vec)

- So we can learn similar embeddings given enough data

- But still separate parameters, and will still hurt with rare words

Other Limitations
Tokenization

7

• Let’s reconsider how we split:

- Instead of white spaces, just split to characters

• Impact on vocabulary size? Unknown word problem? Other input
properties?

- Small vocabulary: just the number of unique characters in the training
data!

- Much longer input sequences

- Need to learn from scratch how to combine characters to recover word
meaning

‣ Will BOW/NBOW models work?

Character-level Tokenization

8

• Let’s reconsider how we split:

- Instead of white spaces, just split to characters

• Impact on vocabulary size? Unknown word problem? Other input
properties?

- Small vocabulary: just the number of unique characters in the training
data!

- Much longer input sequences

- Need to learn from scratch how to combine characters to recover word
meaning

‣ Will BOW/NBOW models work?

Character-level Tokenization

9

• “Word”-level: issues with unknown words
and information sharing, and gets
complex fast

- Also, fits poorly to some languages

• Character-level: long sequences, the
model needs to do a lot of heavy lifting in
representing that is encoded in plain-sight

• Let’s find a middle ground!

• Subword tokenization first developed for
machine translations

- Based on byte pair encoding (Gage,
1994)

• Now, used everywhere

Subword Tokenization

10

Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pages 1715–1725,
Berlin, Germany, August 7-12, 2016. c�2016 Association for Computational Linguistics

Neural Machine Translation of Rare Words with Subword Units

Rico Sennrich and Barry Haddow and Alexandra Birch

School of Informatics, University of Edinburgh
{rico.sennrich,a.birch}@ed.ac.uk, bhaddow@inf.ed.ac.uk

Abstract

Neural machine translation (NMT) mod-
els typically operate with a fixed vocabu-
lary, but translation is an open-vocabulary
problem. Previous work addresses the
translation of out-of-vocabulary words by
backing off to a dictionary. In this pa-
per, we introduce a simpler and more ef-
fective approach, making the NMT model
capable of open-vocabulary translation by
encoding rare and unknown words as se-
quences of subword units. This is based on
the intuition that various word classes are
translatable via smaller units than words,
for instance names (via character copying
or transliteration), compounds (via com-
positional translation), and cognates and
loanwords (via phonological and morpho-
logical transformations). We discuss the
suitability of different word segmentation
techniques, including simple character n-
gram models and a segmentation based on
the byte pair encoding compression algo-
rithm, and empirically show that subword
models improve over a back-off dictionary
baseline for the WMT 15 translation tasks
English!German and English!Russian
by up to 1.1 and 1.3 BLEU, respectively.

1 Introduction

Neural machine translation has recently shown
impressive results (Kalchbrenner and Blunsom,
2013; Sutskever et al., 2014; Bahdanau et al.,
2015). However, the translation of rare words
is an open problem. The vocabulary of neu-
ral models is typically limited to 30 000–50 000
words, but translation is an open-vocabulary prob-

The research presented in this publication was conducted
in cooperation with Samsung Electronics Polska sp. z o.o. -
Samsung R&D Institute Poland.

lem, and especially for languages with produc-
tive word formation processes such as aggluti-
nation and compounding, translation models re-
quire mechanisms that go below the word level.
As an example, consider compounds such as the
German Abwasser|behandlungs|anlange ‘sewage
water treatment plant’, for which a segmented,
variable-length representation is intuitively more
appealing than encoding the word as a fixed-length
vector.

For word-level NMT models, the translation
of out-of-vocabulary words has been addressed
through a back-off to a dictionary look-up (Jean et
al., 2015; Luong et al., 2015b). We note that such
techniques make assumptions that often do not
hold true in practice. For instance, there is not al-
ways a 1-to-1 correspondence between source and
target words because of variance in the degree of
morphological synthesis between languages, like
in our introductory compounding example. Also,
word-level models are unable to translate or gen-
erate unseen words. Copying unknown words into
the target text, as done by (Jean et al., 2015; Luong
et al., 2015b), is a reasonable strategy for names,
but morphological changes and transliteration is
often required, especially if alphabets differ.

We investigate NMT models that operate on the
level of subword units. Our main goal is to model
open-vocabulary translation in the NMT network
itself, without requiring a back-off model for rare
words. In addition to making the translation pro-
cess simpler, we also find that the subword models
achieve better accuracy for the translation of rare
words than large-vocabulary models and back-off
dictionaries, and are able to productively generate
new words that were not seen at training time. Our
analysis shows that the neural networks are able to
learn compounding and transliteration from sub-
word representations.

This paper has two main contributions:

• We show that open-vocabulary neural ma-

1715

The main motivation behind this
paper is that the translation of
some words is transparent in that
they are translatable by a
competent translator even if they
are novel to him or her, based on a
translation of known subword units
such as morphemes or phonemes.

• All characters in the training data
(as base tokens)

• For steps:

- Tokenize the data, taking the longest
prefix each time

- Count the frequency of adjacent token
pairs in the data

- Choose the pair that occurs most
frequently

- Add the pair to the vocabulary as a
new token

• Return

𝒱 ←

k

⟨l, r⟩

𝒱 ← 𝒱 ∪ {lr}

𝒱

Byte Pair Encoding (BPE)

11
Example from: https://huggingface.co/docs/transformers/tokenizer_summary

https://huggingface.co/docs/transformers/tokenizer_summary

• All characters in the training data
(as base tokens)

• For steps:

- Tokenize the data, taking the longest
prefix each time

- Count the frequency of adjacent token
pairs in the data

- Choose the pair that occurs most
frequently

- Add the pair to the vocabulary as a
new token

• Return

𝒱 ←

k

⟨l, r⟩

𝒱 ← 𝒱 ∪ {lr}

𝒱

Byte Pair Encoding (BPE)

12
Example from: https://huggingface.co/docs/transformers/tokenizer_summary

Word Frequency
hug 10
pug 5
pun 12
bun 4
hugs 5

𝒱 = {b, g, h, n, p, s, u}

https://huggingface.co/docs/transformers/tokenizer_summary

• All characters in the training data
(as base tokens)

• For steps:

- Tokenize the data, taking the longest
prefix each time

- Count the frequency of adjacent token
pairs in the data

- Choose the pair that occurs most
frequently

- Add the pair to the vocabulary as a
new token

• Return

𝒱 ←

k

⟨l, r⟩

𝒱 ← 𝒱 ∪ {lr}

𝒱

Byte Pair Encoding (BPE)

13
Example from: https://huggingface.co/docs/transformers/tokenizer_summary

Word Frequency
h+u+g 10
p+u+g 5
p+u+n 12
b+u+n 4

h+u+g+s 5

𝒱 = {b, g, h, n, p, s, u}

https://huggingface.co/docs/transformers/tokenizer_summary

• All characters in the training data
(as base tokens)

• For steps:

- Tokenize the data, taking the longest
prefix each time

- Count the frequency of adjacent token
pairs in the data

- Choose the pair that occurs most
frequently

- Add the pair to the vocabulary as a
new token

• Return

𝒱 ←

k

⟨l, r⟩

𝒱 ← 𝒱 ∪ {lr}

𝒱

Byte Pair Encoding (BPE)

14
Example from: https://huggingface.co/docs/transformers/tokenizer_summary

Word Frequency
h+u+g 10
p+u+g 5
p+u+n 12
b+u+n 4

h+u+g+s 5

𝒱 = {b, g, h, n, p, s, u}

Pair Frequency
u+g 20
p+u 17
u+n 16
h+u 15
g+s 5…

https://huggingface.co/docs/transformers/tokenizer_summary

• All characters in the training data
(as base tokens)

• For steps:

- Tokenize the data, taking the longest
prefix each time

- Count the frequency of adjacent token
pairs in the data

- Choose the pair that occurs most
frequently

- Add the pair to the vocabulary as a
new token

• Return

𝒱 ←

k

⟨l, r⟩

𝒱 ← 𝒱 ∪ {lr}

𝒱

Byte Pair Encoding (BPE)

15
Example from: https://huggingface.co/docs/transformers/tokenizer_summary

Word Frequency
h+u+g 10
p+u+g 5
p+u+n 12
b+u+n 4

h+u+g+s 5

𝒱 = {b, g, h, n, p, s, u}

Pair Frequency
u+g 20
p+u 17
u+n 16
h+u 15
g+s 5…

https://huggingface.co/docs/transformers/tokenizer_summary

• All characters in the training data
(as base tokens)

• For steps:

- Tokenize the data, taking the longest
prefix each time

- Count the frequency of adjacent token
pairs in the data

- Choose the pair that occurs most
frequently

- Add the pair to the vocabulary as a
new token

• Return

𝒱 ←

k

⟨l, r⟩

𝒱 ← 𝒱 ∪ {lr}

𝒱

Byte Pair Encoding (BPE)

16
Example from: https://huggingface.co/docs/transformers/tokenizer_summary

Word Frequency
h+u+g 10
p+u+g 5
p+u+n 12
b+u+n 4

h+u+g+s 5

𝒱 = {b, g, h, n, p, s, u, ug}

Pair Frequency
u+g 20
p+u 17
u+n 16
h+u 15
g+s 5…

https://huggingface.co/docs/transformers/tokenizer_summary

• All characters in the training data
(as base tokens)

• For steps:

- Tokenize the data, taking the longest
prefix each time

- Count the frequency of adjacent token
pairs in the data

- Choose the pair that occurs most
frequently

- Add the pair to the vocabulary as a
new token

• Return

𝒱 ←

k

⟨l, r⟩

𝒱 ← 𝒱 ∪ {lr}

𝒱

Byte Pair Encoding (BPE)

17
Example from: https://huggingface.co/docs/transformers/tokenizer_summary

Word Frequency
h+ug 10
p+ug 5

p+u+n 12
b+u+n 4
h+ug+s 5

𝒱 = {b, g, h, n, p, s, u, ug}

https://huggingface.co/docs/transformers/tokenizer_summary

• All characters in the training data
(as base tokens)

• For steps:

- Tokenize the data, taking the longest
prefix each time

- Count the frequency of adjacent token
pairs in the data

- Choose the pair that occurs most
frequently

- Add the pair to the vocabulary as a
new token

• Return

𝒱 ←

k

⟨l, r⟩

𝒱 ← 𝒱 ∪ {lr}

𝒱

Byte Pair Encoding (BPE)

18
Example from: https://huggingface.co/docs/transformers/tokenizer_summary

Word Frequency
h+ug 10
p+ug 5

p+u+n 12
b+u+n 4
h+ug+s 5

𝒱 = {b, g, h, n, p, s, u, ug}

Pair Frequency
u+n 16

h+ug 15
p+u 12

p+ug 5
ug+s 5…

https://huggingface.co/docs/transformers/tokenizer_summary

• All characters in the training data
(as base tokens)

• For steps:

- Tokenize the data, taking the longest
prefix each time

- Count the frequency of adjacent token
pairs in the data

- Choose the pair that occurs most
frequently

- Add the pair to the vocabulary as a
new token

• Return

𝒱 ←

k

⟨l, r⟩

𝒱 ← 𝒱 ∪ {lr}

𝒱

Byte Pair Encoding (BPE)

19
Example from: https://huggingface.co/docs/transformers/tokenizer_summary

Word Frequency
hug 10

p+ug 5
p+un 12
b+un 4
hug+s 5

𝒱 = {b, g, h, n, p, s, u, ug, un, hug}

https://huggingface.co/docs/transformers/tokenizer_summary

• To avoid <UNK> altogether, must add all possible characters/
symbols

- Oops: there are ~138K unicode symbols

• Instead, use bytes!

- GPT-2 does this with some rules to prevent certain types of
merges

- Commonly vocabulary sizes are 32-64K

• Package to help with tokenization: tokenizers from Hugging Face
(https://github.com/huggingface/tokenizers)

Byte Pair Encoding (BPE)

20

https://github.com/huggingface/tokenizers

• WordPiece (Schuster et al., 2012): merge to increase likelihood
as measured by a language model (vs. frequency as in BPE)

• SentencePiece (Kudo et al., 2018): can do subword tokenization
without pre-tokenization (i.e., using white spaces)

- Good for words without such word boundaries

- Although pre-tokenization still usually helps

Other Subword Encoding Schemes

21

• Subwords can be arbitrary strings

• But can also be meaning-bearing units

- Can capture morphemes (the smallest meaning-bearing unit)

‣ “unlikeliest” → [un-, likely, -est]

- Can separate single form from plural

- etc

• Importantly: this arises from the data

What do Subwords Capture?
Subword Tokenization

22

• Does not work well with languages that have more complex
morphology (word forms), such as Turkish and Arabic

• Pre-tokenization using spaces doesn’t work on some languages
(e.g., Chinese and Thai don’t use spaces between words)

• There are other recipes:

- Tokenizer free, just work with bytes (e.g., ByT5)

- Other learning techniques with soft tokenization (e.g.,
Charformer)

Limitations
Subword Tokenization

23

• The slides in this deck were adapted from UMass Amherst CS
685 by Mohit Iyyer

• Some modifications followed on slides form University of Utah
CS 6340 by Ana Marasović

Acknowledgements

24

