The Bombe

Hyperboloids of
wondrous light

What?! | can’t
understand. It’s too
noisy

| can help. | will
now proceed to
decode

@)3)2)3)E) @@‘@@@' ,
D999 9D DD

L)
.

‘3\ Q }';u‘ AT e & SN
Cornell CQ 5740: t$ |-.Ea g’%@’ 0| éﬂ@iﬁ' |

Yoav Artzi, Sprlng 2023

-~ Warren Weaver
(e AR I o

b e
.
e LU,

But what can we
assume?

y ; . v ._..v:; .':'._ l "_"
Andrey Markov o g S04 r

Language Models

From the Imitation Game (2014)
e —

The Language Model Problem

 Let a vocabulary 7 be a finite set of tokens
7" = {the, a, man, telescope, Madrid, two, ...}
« We can construct an infinite set of sentences (i.e., strings) x
. 7T = {the, a, the a, the fan, the man, the man with the telescope, ...}

. Given: a dataset of example sentence & = {¥V}1,

« Goal: estimate a probability distribution p(the) = 10712
over sentences, s.t., Z p(x) =1 p(a) = 10713
X ¥ XGZT p(the fan) = 10712
and p(X) > Oforallx € 7/

p(the fan saw Beckham) =2 x 107®
 Question: why would we ever want to do this? p(the fan saw saw) = 107"

Language Models Use
The Noisy Channel Model

 Goal: predict a sentence given some input p(x | a)

Language model:

* The noisy channel approach:
Distributions over

X* =argmax p(x | a) sequences of
xe7’ words (sentences)
Input signal of = argmax p(a | X)p(x)/p(a)
some sorts x€71
(e.g., audio) = argmax p(a | X)p(x)
b=yl

 So, if p(a| X) is not great (i.e., noisy), p(X) can compensate

The Noisy Channel Model

Speech Recognition

Automatic speech recognition (ASR)

Audio in a, text out x

10000- |

-10000E-

UE—_ -Ww

“Wreck a nice beach?”
- “Recognize speech”
“Eye eight uh Jerry?”

- “l ate a cherry”

[P I AR | PPN PP P | -
0:80 1.00 1.20 | 1.40 1.60 1.80

i .20...A

SUPER ANTICS

Qu-- YOU SAVED MY LIFE !)
: /

‘ NONSENSE, | D\D NOT SHAVE

YOUR WIFE.

Speech Recognition

Acoustically Scored Hypotheses

the station signs are in deep in english -14732
the stations signs are in deep in english -14735
the station signs are in deep into english -14739
the station 's signs are in deep in english -14740
the station signs are in deep in the english -14741
the station signs are indeed in english -14757
the station 's signs are indeed in english -14760
the station signs are indians in english -14790
the station signs are indian in english -14799
the stations signs are indians in english -14807

the stations signs are indians and english -14815

Speech Recognition
ASR Noisy Channel System

e Let a be an audio signal, x a sentence, and:
- Source be a language model p(x)
- Channel be an acoustic model p(a | X)

« We decode x from a using Bayes rule:

arg max p(x|a) = arg max p(a|xX)p(X)

The Noisy Channel Model

Translation

“Also knowing nothing official about, but having guessed and
inferred considerable about, the powerful new mechanized
methods in cryptography —methods which | believe succeed even
when one does not know what language has been coded—one
naturally wonders if the problem of translation could conceivably
be treated as a problem in cryptography. When | look at an article
In Russian, | say: ‘This is really written in English, but it has been
coded in some strange symbols. | will now proceed to decode.” ”

Warren Weaver

(1955:18, quoting a letter he wrote in 1947)

Translation
MT Noisy Channel System

* Let f be a sentence in the source language, X a sentence in the
target language, and:

- Source be a language model p(x)
- Channel be a translation model p(f|X)

« We decode X from f using Bayes rule:

arg max p(x|f) = arg max p(f|x)p(x)

Caption Generation
Captioning Noisy Channel System

« Let I be a sentence in the source language, X a sentence in the
target language, and:

- Source be a language model p(X)
- Channel be an image model p(/ | x)
« We decode X from I using Bayes rule:

arg max p(x| /) = arg max p(I| X)p(X)

Language Models Use

Universal Text Models

Assume that any problem can be described as text-to-text:
- What is the french translation of “I love Lucy”? — J'aime lucy

- What is the sentiment of “l Love Lucy”? — Very positive

Then a language model can conceptually solve it by just
generating the answer as continuation

So, language models can be universal text models

Of course, that would have to be a really good language model

Language Models Use

Universal Text Models

°
>
o
N
@
®
[
s
=

Ueys

Better Language
Models and Their
Implications

We've trained a large-scale unsupervised
language model which generates
coherent paragraphs of text, achieves
state-of-the-art performance on many
language modeling benchmarks, and
performs rudimentary reading
comprehension, machine translation,
question answering, and summarization
— all without task-specific training.

<> VIEW CODE

[) READ PAPER

Learning Language Models

« Goal: estimate p(X), where X is a natural language sentence
 Learning input: M observations of raw sentences X

* Learning output: model to compute p(x) for any X

* Probabilities should broadly indicate sentence plausibility
- p(l saw a van) > > p(eyes aw of an)

- Not only grammaticality: p(artichokes intimidate zippers) ~ 0

- Generally, plausibility depends on context

Learning Language Models

Goal: estimate p(X), where X is a natural language sentence

Learning input: M observations of raw sentences X

Learning output: model to compute p(X) for any X

Option 1: empirical distribution over training sentences

c(Xx)

p(x) = EYE where c is the counting function

Learning Language Models

« Goal: estimate p(X), where X is a natural language sentence
« Learning input: M observations of raw sentences x

 Learning output: model to compute p(x) for any X

* Option 1: empirical distribution over training sentences

c(Xx)

p(x) = EYE where c is the counting function

* Problem: does not generalize at all!

- Need to be able to assign non-zero probabilities to unseen
sentences

Probability Decomposition

« Assume: the choice of each word x; in X = (x;, ..., X,) depends
on previous words only

px) = Hp(xi|x1, ey Xi1)
=1

 Better?

Probability Decomposition

» Decompose using the chain rule: the choice of each word X; in
X = (x, ...,Xx,) depends on previous words only

p® =[] pGilxi, ki)
i=1

o Better?

- Yes, but not really: last word still represents the complete
sentence event, and will zero everything

- So, back to square one

Probability Decomposition

» Decompose using the chain rule: the choice of each word X; in
X = (x, ...,Xx,) depends on previous words only

p® =[] pGilxi, ki)
i=1

o Better?

Probability Decomposition

Markov Assumption

 Markov property refers to the memoryless property of a
stochastic process (i.e., future decision are independent of the

past)
* A stochastic model can assume the Markov property

p(english | this is really in) =~
p(english |is really in) =~

p(english [really in) =~

p(english |in) =~

p(english)
e It's a simplifying approximation — no free lunch!

Unigram Models

* The most crude approximation: unigrams
n
p(® = p((x, ... %) = [[)
i=1

where x; € 7" U {STOP}

* Can easily compute the probability of a given sentence

* And can also generate! i=0
repeat
I+ +
x; ~ p(x)
until x; = STOP
return (x, ..., X;)

Unigram Models

* The most crude approximation: unigrams
n
p(® = p((xy,x,) = [[&)
i=1

* Let’s generate:
- [thrift, did, eighty, said, hard, 'm, july, bullish]
-
- [after, any, on, consistently, hospital, lake, of, of, other, and, factors, raised, analyst,

too, allowed, mexico, never, consider, fall, bungled, davison, that, obtain, price, lines,
the, to, sass, the, the, further, board, a, details, machinists, between, nasdaq]

. Why is it bad?

Unigram Models

The most crude approximation: unigrams

p(X) = p({xy; ... X%,)) = Hp(x,-)
i=1

Let’s generate:
- [thrift, did, eighty, said, hard, 'm, july, bullish]
-]

- [after, any, on, consistently, hospital, lake, of, of, other, and, factors, raised, analyst,
too, allowed, mexico, never, consider, fall, bungled, davison, that, obtain, price, lines,
the, to, sass, the, the, further, board, a, details, machinists, between, nasdaq]

Why is it bad?

Big problem with unigrams: p(the the the the) > > p(l like icecream)

Bi-gram Models

* Relaxing the strict Markov assumption a bit: bi-grams
n
p(x) — p((x]a ceey -xn>) == Hp(’xilxi—l)’ where XO = * ,xl' - % U {STOP}
i=1
« Why do we need xy = *?
* Examples:

- [texaco, rose, one, in, this, issue, is, pursuing, growth, in, a, boiler, house, said, mr., gurria,
mexico, 's, motion, control, proposal, without, permission, from, five, hundred, fifty, five, yen]

- [although, common, shares, rose, forty, six, point, four, hundred, dollars, from, thirty,
seconds, at, the, greatest, play, disingenuous, to, be, reset, annually, the, buy, out, of,
american, brands, vying, for, mr., womack, currently, sharedata, incorporated, believe,
chemical, prices, undoubtedly, will, be, as, much, is, scheduled, to, conscientious, teaching]

- [this, would, be, a, record, november]

* No free lunch: what’s the cost compared to unigram models?

N-gram Models

e N-gram models (N > 1) condition on N — 1 previous words
n
pxy, .. x,) = HP(Xi | Xi—v=1ys -+ > Xi1)
i=1

where x; € 7 U {STOP} and x_y.,9, ..., xg = *

 Example 3-gram model:

p(the dog barks STOP) = p(the| *,*) X p(dog | *, the) X
p(barks | the, dog) X p(STOP | dog, barks)

N-gram Models

Well-defined Distributions

. Simplest case: unigrams p(X) = p({xy, ..., X)) = [I., p(x)
« For all strings X (of any length): p(X) > 0
« Need to show the sum over string of all lengths ¥_px) =1

1) Zp(fc)—z Z Py, -5 %)

n=1 x,..

Z Py, ... %,) = Z Hp(x)—Z Zp(xox X ()

(..... x, i=1
=) plr) X+ x Y plx,) = (1 ps)” ! where p, = p(STOP)

0 ! 0 1
2 2 p® = (1 =p)p;=p,) (1=p)~ =p 0"
X n=1 n=1 §

N-gram Models etmork e e

. . - - not necessarily well-
Well-defined Distributions define distributions

(Chen et al. 2018)

. Simplest case: unigrams p(X) = p({xy, ..., X)) = [I., p(x)
« For all strings X (of any length): p(X) > 0
« Need to show the sum over string of all lengths ¥_px) =1

Zpoc)—Z Z p(xy. ... X,)

n=1 x,..

D ., = Z Hp(x)-Z Zp(xox X p(x,)

©) XsenesXy X, =1
=) pla) X = X Y plx,) = (1 - ps)” ! where p, = p(STOP)

0 0 1
2 2 p® = (=p)p=p, Y (1 =p)yt=p—r—=1
X n=1 n=1 - (_ps)

http://aclweb.org/anthology/N18-1205.pdf

N-gram Models

Sampling from N-gram models

e N-gram models (N > 1) condition on N — 1 previous words
n
Xy s X)) = Hp(xl- | Xi— N1y =+ s Xi—1)
i=1
where x; € 77U {STOP} and x_p 9, ..., Xy = *

» Sampling generalizes easily from unigrams and up:

=0
repeat
[+ +

xi ~ p(xl- | xl-_(N_l), ooy xi_l)
until x; = STOP

return (X, ..., x;)

N-gram Models

Learning

The parameters of N-gram models are the probabilities

Maximum likelihood estimate has a closed-form solution: relative frequencies

c(w) c(v,w) c(u,v, w)
« (W) =——, gy w|v) = o QW u,v) = ———m—, ...
c() c(v) c(u, v)
« where c¢(), c(w), c(w, V), ... the empirical counts on the training set Training Counts
+ The general approach: 198015222 the first
194623024 the same

- Take a training set D and test set D’ _
168504105 the following

- Compute the ML estimates using D 158562063 the world

- Use it to assign probabilities to other sentences, such as those in D’
14112454 the door

14,112,454
py(door|the) = = 0.0006 *
2,313,581,162 23135851162 the *

* Probabilities will be very small, so everything is done in log-space

N-gram Models

Learning

* As we increase N (higher-order N-grams), sparsity increases

 Counts becomes smaller and smaller, and there are more zeros

198015222 the first 197302 close the window 3380 please close the door
194623024 the same 191125 close the door 1601 please close the window
168504105 the following 152500 close the gap 1164 please close the new
158562063 the world 116451 close the thread 1159 please close the gate
87298 close the deal

14112454 the door | |-—===—mmmmmmmmm- 0 please close the first
————————————————— 3785230 close the * mmmmmemmmeemeeee-

23135851162 the * 13951 please close the *

Please close the door

Please close the first window on the left

N-gram Models

Approximating Shakespeare

1-gram

2-gram

3-gram

4-gram

To him swallowed confess hear both. Which. Of save on trail for are ay device
and rote life have gram

Hill he late speaks; or! a more to leg less first you enter

Why dost stand forth thy canopy, forsooth; he is this palpable hit the King
Henry. Live king. Follow.

What means, sir. | confess she? then all sorts, he is trim, captain.

Fly, and will rid me these news of price. Therefore the sadness of parting, as
they say, ’tis done.

This shall forbid it should be branded, if renown made it empty.

King Henry. What! | will go seek the traitor Gloucester. Exeunt some of the
watch. A great banquet serv’d in;

It cannot be but so.

N-gram Models

Shakespeare as a Corpus

884,647 tokens, vocabulary size of | 7" | =29,066

Shakespeare produced 300,000 bigram types out of | 7" |2=
844M possible bigrams

- S0 99.96% of the possible bigrams were never seen (have zero
entries in the table)

* Even worse with 4-grams: what's coming out looks like
Shakespeare because it is Shakespeare

* More about this real soon ... but first: evaluation

Evaluation

How Good is our Model?

 How good is our model? At what?
* The goal is not to just generate fake sentences!
- That would be easy to do well
- Higher order n-grams will always give better looking sentences
- But they are just overfitting — why?
* We want our model to prefer good sentences over bad ones
- Higher probability to real or frequent sentences
> Than ungrammatical or rare ones

- How does this relate to how we use the language model? For example, in a
noisy channel transcription system

Evaluation
Testing

* We must test the model on data it hasn’t seen during learning
- Otherwise — overfitting! @2
 We need an evaluation metric — two options:

- Extrinsic: focused on however the model will be used — for
example, can it improve a transcription system?

- Intrinsic: focused on the language model task — how good
can the model assign probabilities to real unseen data?

 |deally, the two correlate, but reality is more complex

Extrinsic Evaluation
Word Error Rate (WER)

« Common metric for automatic speech transcription (ASR) evaluation

 Given an output X* and a gold label 5.

+ # deletions + # substitutions

WER(x*, xM) = :
words in XM

» Extrinsic measures are more credible, but limited to a specific use and are harder to
deploy

- You need the complete system, and often evaluating it is hard

5. Andy saw a part of the movie

WER(x*, xV) =
| v v \ ») il+2_4

_ , =—=57%
X*: And he saw apart of the movie 7 7

Intrinsic Evaluation

The Shannon Game

 How well can we predict the next word?

grease 0.5
When | eat pizza, | wipe of the sauce 0.4

dust 0.05
Many children are allergic to

mice 0.0001
| saw a

the 1E-100

« Unigrams are terrible at this game (why?)

* A better model of text is one which assigns a higher probability
to the word that actually occurs

Evaluation
Perplexity

* The best language model is the one the is best at predicting the test set — will give
test sentences the highest probability

» Perplexity is the inverse probability of the test set, normalized by the number of words:

e Given a set of test sentences D’ with a total of m words:

PP(D") = p(D~"" = ([| pxp~""

x€eD’
 In practice, we work in log space:
PP(D’) = 2= Lsep' 102 P()
* Lower perplexity is better

« What happens if we give a test sentence zero probability? &

Evaluation

Perplexity of a Uniform Model

e Under a uniform distribution perplexity will be the vocabulary size

« Assume M sentences consisting of m random digits, |7 | = 10

 What is the perplexity of this data for a model that assigns
p(-) = - to each digit

(i)|

PP = 2w Ziey loga(1p)”

_1
— D" m
— 2—10g211—0 — 2—10g2 101 — 10

M

—(7 1
i1 |x(l)|10g2 10

* Perplexity is weighted equivalent branching factor

Evaluation

Perplexities of Contemporary Models

125

100
i Zaremba et al. (2014) - LSTM (large)
X 75
- Recurrent*highway networks
oc
o AWD-LSTM + continuous cache pointer
= 50 GL-LWGC +AWD-MoS-LSTM + dynamic eval
0
= GPT-2

25 GPT-3-(Zero-Shot)
0
2016 2018 2020 2022
Other models Models with lowest Test perplexity

https://paperswithcode.com/sota/language-modelling-on-penn-treebank-word

https://paperswithcode.com/sota/language-modelling-on-penn-treebank-word

Sparsity in Language Models

* N-gram models work well if test data is looks like training corpus
- This is rarely the case, so need models that generalize

« Specifically, with n-gram models: new n-grams appear all the time
- New words too! More on that a bit later

* This means encountering zeros during test

New words/word pairs

1
I e 2 00 0000000000000000000000000000000) .
0.9 5 o Unigrams
c 0.8 {© .
S 07 e snnEEEEEEE O Bigrams
S 05 -
£ 04 P
S 0.3 U
- 02
0.1
0 Ej T T T T 1
0 200000 400000 600000 800000 1000000

Number of Words

Sparsity in Language Models

Zeros
Training Set Test Set
.. denied the allegations ... denied the offer
.. denied the reports ... denied the loan

.. denied the claims

.. denied the request

p(offer | denied the) = 0

* A single n-gram with zero probability — the probability of the
entire test set Is zero

« Can’t even compute perplexity (can’t divide by zero)

Smoothing

Intuition

e Estimating statistics from

P(w | denied the)
Sparse data 3 allegations
2 reports
« Smoothing steals 8 g & 1 claims
probability mass to g% 5 1 request
generalize better 7 total
« Very important across SmOOth'”g*
NLP, but easy to do badly P(w | denied the)
] 2.5 allegations
. 1.5 reports
 Not gone in neural : i) 0.5 claims
© 3@@.5..5 8 2 other

7 total

Smoothing

Add-one Estimation

* Pretend we saw each word one more time than we did
* S0, just add one to all counts
- And don’t forget to adjust normalization properly

c(x;_1,X;) c(x;_q,x;) + 1

> Padd—1(x | x;_1) =
c(x;_1) c(xi_) + | 7|

e Also called Laplace smoothing

PmLe(X; [x;_1) =

Smoothing

Generalizing Add-one Smoothing

e Add-k:

c(x;_,x;) + k
c(x;_) + k|7 |

Padd—(X; 1 x;_1) =

e Unigram prior smoothing:

c(x;_1, X;) + mp(x;)

Pada—uX; [x;_) =
Add-U\ V-1 c(xi_1)+m

Berkeley Restaurant Corpus

e can you tell me about any good cantonese restaurants close by
* mid priced thai food is what i’'m looking for

 tell me about chez panisse

e can you give me a listing of the kinds of food that are available
* I’m looking for a good place to eat breakfast

* when is caffe venezia open during the day

Berkeley Restaurant Corpus

Raw Counts (9222 sentences)

e Bigrams
1 want | to eat chinese | food | lunch | spend

1 5 827 0 9 0 0 0 2
want 2 0 608 | 1 6 6 5 |
to 2 0 4 686 | 2 0 6 211
eat 0 0 2 0 16 2 42 0
chinese 1 0 0 0 0 82 1 0
food 15 0 15 0 1 4 0 0
lunch 2 0 0 0 0 1 0 0
spend 1 0 1 0 0 0 0 0

e Unigram
1 want to eat chinese food lunch spend

2533 927 2417 746 158 1093 341 278

Berkeley Restaurant Corpus

Normalized Bi-gram Probabilities

(X1, X;)
PyLe(; [Xi_p) =
c(x;_1)

1 want | to eat chinese | food | lunch | spend
1 0.002 033 1|0 0.0036 | 0 0 0 0.00079
want 0.0022 |0 0.66 [0.0011 | 0.0065 | 0.0065] 0.0054 | 0.0011
to 0.00083 | 0 0.0017 { 0.28 | 0.00083 | O 0.0025 | 0.087
eat 0 0 0.0027 | O 0.021 0.0027 | 0.056 |0
chinese || 0.0063 | 0 0 0 0 0.52 | 0.0063 |0
food 0014 |0 0.014 |0 0.00092 | 0.0037 | O 0
lunch | 0.0059 |0 0 0 0 0.0029 | O 0
spend | 0.0036 | 0O 0.0036 | 0 0 0 0 0

Berkeley Restaurant Corpus
Counts with Add-one Smoothing

1 want | to eat chinese | food | lunch | spend
1 6 828 1 10 1 1 1 3
want 3 1 609 | 2 7 7 6 2
to 3 1 5 687 | 3 1 7 212
eat 1 1 3 1 17 3 43 1
chinese 2 1 1 1 1 83 2 1
food 16 | 1 16 1 2 5 1 1
lunch 3 1 1 1 1 2 1 1
spend 2 1 2 1 1 1 1 1

Berkeley Restaurant Corpus
Add-one Smoothed Bi-gram Probabilities

Padd—1 | x;_1) =

clx;_,x) + 1

c(xi_1) + 7|

1 want to eat chinese | food lunch spend
1 0.0015 0.21 0.00025| 0.0025 0.00025| 0.00025| 0.00025| 0.00075
want 0.0013 0.00042| 0.26 0.00084 | 0.0029 0.0029 0.0025 0.00084
to 0.00078 | 0.00026| 0.0013 0.18 0.00078| 0.00026| 0.0018 0.055
eat 0.00046| 0.00046| 0.0014 0.00046| 0.0078 0.0014 0.02 0.00046
chinese || 0.0012 0.00062| 0.00062| 0.00062| 0.00062(0.052 0.0012 0.00062
food 0.0063 0.00039 | 0.0063 0.00039| 0.00079| 0.002 0.00039| 0.00039
lunch 0.0017 0.00056| 0.00056| 0.00056| 0.00056(0.0011 0.00056| 0.00056
spend 0.0012 0.00058 | 0.0012 0.00058 | 0.00058] 0.00058| 0.00058| 0.00058

Berkeley Restaurant Corpus

Reconstituted Counts

el x) c(xi_,x)+ 1
PAdd—1W | X)+ V
. - (el x) + De(xg_y)
c*(Xi_1, X)) =
clxi_)+V
1 want to eat chinese | food| Ilunch| spend
1 3.8 527 0.64 6.4 0.64 0.64 | 0.64 1.9
want 1.2 0.39 238 0.78 2.7 2.7 2.3 0.78
to 1.9 0.63 3.1 430 1.9 0.63| 4.4 133
eat 0.34| 0.34 1 0.34 5.8 1 15 0.34
chinese 0.2 0.098| 0.098| 0.098| 0.098 8.2 0.2 0.098
food 6.9 0.43 6.9 0.43 0.86 2.2 0.43 0.43
lunch 0.57| 0.19 0.19 0.19 0.19 0.38 | 0.19 0.19
spend 0.32] 0.16 0.32 0.16 0.16 0.16 | 0.16 0.16

Berkeley Restaurant Corpus

Original vs. Reconstituted Counts

1 chinese | food | lunch | spend

1 5 0 0 0 2
want 2 0 6 6 5 1
to 2 0 v 2 211
eat 0 0 2 0 16 0
chinese 1 0 0 0 0 0
food 15| 0 15 0 1 0
lunch 2 0 0 0 0 0
spend 1 0 | 0 0 0

1 chinese | food| Ilunch| spend
1 3.8 0.64 0.64 0.64 1.9
want 1.2 2.7 2.3 0.78
to 1.9 .63 b 1.9 4.4 133
eat 0.34| 0.34 1 0.34 5.8 pF—=| 15 0.34
chinese 0.2 0.098| 0.098| 0.098| 0.098 ‘ .) 0.2 0.098
food 6.9 0.43 6.9 0.43 0.86 0.43 0.43
lunch 0.57| 0.19 0.19 0.19 0.19 0.19 0.19
spend 0.32| 0.16 0.32 0.16 0.16 0.16 0.16

Add-one Smoothing

e Simple, but very blunt instrument

 In practice, a relatively poor choice for n-gram language models

 But can be useful in domains where the number of zeros doesn’t
dominate

Smoothing

Backoff and Linear Interpolation

Sometimes it helps to use lower-order n-grams

- Condition on less context, means you are more likely to have
stronger support from the training data (i.e., more common event)

Backoff: use lower-order n-gram

- For tri-gram, use tri-gram if you have good evidence, otherwise
use bi-gram, otherwise unigram

Linear interpolation: mix lower-order n-grams

- For tri-gram, mix with with bi-gram and unigram probabilities

Interpolation works better

Linear Interpolation

* Simple interpolation

Py(x; | x;_15 %) = A3PMLeO | X1 Xi20) + v e 1 X)) + 4ipve(x)

Y =1

* Lambdas conditioned on context
Py(x; | X1, X)) = /13(§§:§)PMLE(Xi | Xi— 15 Xip)+
Ao GoIPMLE(G | X—)+
ll(;i:;)pMLE(xi)

* Are these well defined distributions?

Linear Interpolation

How to Set the Lambdas?

e Use a held-out corpus

« Choose As to maximize the probability of the held-out data

- Fix MLE n-gram probabilities (on training data)

- Then search over A values to maximize the probability of the
held-out data

Smoothing
Advanced Methods

 (General intuition: use the counts of rare events to estimate the
probability of events we haven’t seen

e Used by many smoothing algorithms
- Good-Turing
- Knesser-Ney

- Witten-Baell

Smoothing

Data Scale vs. Method

* Having more data is better, and
techniques that scale win

» But requires crazy scaling tricks

- Pruning to only store estimates we
trust

- Efficient data structures (e.g., tries)

- Bloom filters for approximate
language models

- Storing words as indexes, not
strings

- Using Huffman code for efficient
index assignment

- Quantize probabilities

Test data BLEU

0.44 -

042 r

04

0.38

0.36

0.34

Extrinsic evaluation using phrase-
based machine translation

+051BPIX2, | y.00 * 0
g ® +0.15BP/x2
i ¥ +0.39BP/x2 |
+0.56BP/x2
* #0.70BP/x2 1
-+0.62BP/x2 -
/*/; target KN ——
— +ldcnews KN -
/ g " +webnews KN x|
o target SB e
- +0.66BP/x2 +ldchews SB ---=--
? +webnews SB -~ -~ |
" L | L L Ll L " 1 n +IW§lb SxB ‘ x... ”l’
10 100 1000 10000 100000 1e+06

LM training data size in million tokens

http://www.aclweb.org/anthology/D07-1090.pdf

http://www.aclweb.org/anthology/D07-1090.pdf

Unknown Words

If we know all the words in advance, vocabulary 7 is fixed —
closed vocabulary task

* This is rare and unlike, and often, we can’t tell, and we have open
vocabulary tasks

Out of vocabulary = OOV words

A lot of room for creativity around handling OOVs

Unknown Words
The Most Basic Approach

e Create an unknown word token <UNK>
e Training of <UNK> probabilities
- Create a fixed lexicon L (e.g., rare words are not in L)

- At text normalization phase, any training word not in L changed
to <UNK>

- Now we estimate probabilities like a normal word
e At decoding time

- Normalize and use UNK probabilities for any word not in training

Acknowledgements

We thank the following sources for presentation materials:
» Berkeley CS 288 by Alane Suhr and Dan Klein

* University of Washington CSE 517 by Luke Zettlemoyer
« Stanford CS 124 by Dan Jurafsky

