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Raw Data
N-gram Language Models

Hyperboloids of 
wondrous light

What?! I can’t 
understand. It’s too 

noisy

Alan Turing

Claude Shannon

Warren Weaver

I can help. I will 
now proceed to 

decode

But what can we 
assume?

Andrey Markov

The Bombe



Language Models

From the Imitation Game (2014)



• Let a vocabulary  be a finite set of tokens





• We can construct an infinite set of sentences (i.e., strings) 


• 


• Given: a dataset of example sentence 


• Goal: estimate a probability distribution  
over sentences, s.t.,   
and 


• Question: why would we ever want to do this?

𝒱

𝒱 = {the, a, man, telescope, Madrid, two, …}

x̄

𝒱† = {the, a, the a, the fan, the man, the man with the telescope, …}

𝒟 = {x̄(i)}M
i=1

∑x̄∈𝒱†
p(x̄) = 1

p(x̄) ≥ 0 for all x̄ ∈ 𝒱†

The Language Model Problem

p(the) = 10−12

p(a) = 10−13

p(the fan) = 10−12

p(the fan saw Beckham) = 2 × 10−8

p(the fan saw saw) = 10−15
…



• Goal: predict a sentence given some input 


• The noisy channel approach:





• So, if  is not great (i.e., noisy),  can compensate

p(x̄ |a)

x̄* = arg max
x̄∈𝒱†

p(x̄ ∣ a)

= arg max
x̄∈𝒱†

p(a ∣ x̄)p(x̄)/p(a)

= arg max
x̄∈𝒱†

p(a ∣ x̄)p(x̄)

p(a | x̄) p(x̄)

The Noisy Channel Model
Language Models Use

Language model: 
Distributions over 
sequences of 
words (sentences)

Input signal of 
some sorts 
(e.g., audio)



• Automatic speech recognition (ASR)


• Audio in , text out 


• “Wreck a nice beach?”


- “Recognize speech”


• “Eye eight uh Jerry?”


- “I ate a cherry”

a x̄

Speech Recognition
The Noisy Channel Model



Acoustically Scored Hypotheses
Speech Recognition

the station signs are in deep in english -14732
the stations signs are in deep in english -14735
the station signs are in deep into english -14739
the station 's signs are in deep in english -14740
the station signs are in deep in the english -14741
the station signs are indeed in english -14757
the station 's signs are indeed in english -14760
the station signs are indians in english -14790
the station signs are indian in english -14799
the stations signs are indians in english -14807
the stations signs are indians and english -14815



• Let  be an audio signal,  a sentence, and:


- Source be a language model 


- Channel be an acoustic model 


• We decode  from  using Bayes rule:


a x̄

p(x̄)

p(a | x̄)

x̄ a

arg max
x̄

p(x̄ |a) = arg max
x̄

p(a | x̄)p(x̄)

ASR Noisy Channel System
Speech Recognition



“Also knowing nothing official about, but having guessed and 
inferred considerable about, the powerful new mechanized 
methods in cryptography—methods which I believe succeed even 
when one does not know what language has been coded—one 
naturally wonders if the problem of translation could conceivably 
be treated as a problem in cryptography. When I look at an article 
in Russian, I say: ‘This is really written in English, but it has been 
coded in some strange symbols. I will now proceed to decode.’  ” 


  Warren Weaver 


  (1955:18, quoting a letter he wrote in 1947)

Translation
The Noisy Channel Model



• Let  be a sentence in the source language,  a sentence in the 
target language, and:


- Source be a language model 


- Channel be a translation model 


• We decode  from  using Bayes rule:


f x̄

p(x̄)

p( f | x̄)

x̄ f

arg max
x̄

p(x̄ | f ) = arg max
x̄

p( f | x̄)p(x̄)

MT Noisy Channel System
Translation



• Let  be a sentence in the source language,  a sentence in the 
target language, and:


- Source be a language model 


- Channel be an image model 


• We decode  from  using Bayes rule:


I x̄

p(x̄)

p(I | x̄)

x̄ I

arg max
x̄

p(x̄ | I) = arg max
x̄

p(I | x̄)p(x̄)

Captioning Noisy Channel System
Caption Generation



• Assume that any problem can be described as text-to-text:


- What is the french translation of “I love Lucy”? → J'aime lucy


- What is the sentiment of “I Love Lucy”? → Very positive


• Then a language model can conceptually solve it by just 
generating the answer as continuation


• So, language models can be universal text models


• Of course, that would have to be a really good language model

Universal Text Models
Language Models Use



Universal Text Models
Language Models Use



• Goal: estimate , where  is a natural language sentence 


• Learning input:  observations of raw sentences 


• Learning output: model to compute  for any 


• Probabilities should broadly indicate sentence plausibility 


- 


- Not only grammaticality: 


- Generally, plausibility depends on context

p(x̄) x̄

M x̄

p(x̄) x̄

p(I saw a van) > > p(eyes aw of an)

p(artichokes intimidate zippers) ≈ 0

Learning Language Models



• Goal: estimate , where  is a natural language sentence 


• Learning input:  observations of raw sentences 


• Learning output: model to compute  for any 


• Option 1: empirical distribution over training sentences 





• Problem: does not generalize at all!


- Need to be able to assign non-zero probabilities to unseen 
sentences

p(x̄) x̄

M x̄

p(x̄) x̄

p(x̄) =
c(x̄)
M

, where c is the counting function

Learning Language Models



• Goal: estimate , where  is a natural language sentence 


• Learning input:  observations of raw sentences 


• Learning output: model to compute  for any 


• Option 1: empirical distribution over training sentences 





• Problem: does not generalize at all!


- Need to be able to assign non-zero probabilities to unseen 
sentences

p(x̄) x̄

M x̄

p(x̄) x̄

p(x̄) =
c(x̄)
M

, where c is the counting function

Learning Language Models



• Assume: the choice of each word  in  depends 
on previous words only





• Better?

xi x̄ = ⟨x1, …, xn⟩

p(x̄) =
n

∏
i=1

p(xi |x1, …, xi−1)

Probability Decomposition



• Decompose using the chain rule: the choice of each word  in 
 depends on previous words only





• Better?


- Yes, but not really: last word still represents the complete 
sentence event, and will zero everything


- So, back to square one

xi
x̄ = ⟨x1, …, xn⟩

p(x̄) =
n

∏
i=1

p(xi |x1, …, xi−1)

Probability Decomposition



• Decompose using the chain rule: the choice of each word  in 
 depends on previous words only





• Better?

xi
x̄ = ⟨x1, …, xn⟩

p(x̄) =
n

∏
i=1

p(xi |x1, …, xi−1)

Probability Decomposition



• Markov property refers to the memoryless property of a 
stochastic process (i.e., future decision are independent of the 
past)


• A stochastic model can assume the Markov property





• It’s a simplifying approximation — no free lunch!

p(english | this is really in) ≈
p(english | is really in) ≈
p(english | really in) ≈
p(english | in) ≈
p(english)

Markov Assumption
Probability Decomposition



• The most crude approximation: unigrams





where 


• Can easily compute the probability of a given sentence


• And can also generate!

p(x̄) = p(⟨x1, …, xn⟩) =
n

∏
i=1

p(xi)

xi ∈ 𝒱 ∪ {STOP}

Unigram Models

 
repeat 

 
 

until  
return 

i = 0

i + +
xi ∼ p(x)

xi = STOP
⟨x1, …, xi⟩



• The most crude approximation: unigrams





• Let’s generate:


- [thrift, did, eighty, said, hard, 'm, july, bullish]


- []


- [after, any, on, consistently, hospital, lake, of, of, other, and, factors, raised, analyst, 
too, allowed, mexico, never, consider, fall, bungled, davison, that, obtain, price, lines, 
the, to, sass, the, the, further, board, a, details, machinists, between, nasdaq]


• Why is it bad?


• Big problem with unigrams: 

p(x̄) = p(⟨x1, …, xn⟩) =
n

∏
i=1

p(xi)

p(the the the the) > > p(I like icecream)

Unigram Models



• The most crude approximation: unigrams





• Let’s generate:


- [thrift, did, eighty, said, hard, 'm, july, bullish]


- []


- [after, any, on, consistently, hospital, lake, of, of, other, and, factors, raised, analyst, 
too, allowed, mexico, never, consider, fall, bungled, davison, that, obtain, price, lines, 
the, to, sass, the, the, further, board, a, details, machinists, between, nasdaq]


• Why is it bad?


• Big problem with unigrams: 

p(x̄) = p(⟨x1, …, xn⟩) =
n

∏
i=1

p(xi)

p(the the the the) > > p(I like icecream)

Unigram Models



• Relaxing the strict Markov assumption a bit: bi-grams





• Why do we need ?


• Examples:


- [texaco, rose, one, in, this, issue, is, pursuing, growth, in, a, boiler, house, said, mr., gurria, 
mexico, 's, motion, control, proposal, without, permission, from, five, hundred, fifty, five, yen]


- [although, common, shares, rose, forty, six, point, four, hundred, dollars, from, thirty, 
seconds, at, the, greatest, play, disingenuous, to, be, reset, annually, the, buy, out, of, 
american, brands, vying, for, mr., womack, currently, sharedata, incorporated, believe, 
chemical, prices, undoubtedly, will, be, as, much, is, scheduled, to, conscientious, teaching]


- [this, would, be, a, record, november] 


• No free lunch: what’s the cost compared to unigram models?

p(x̄) = p(⟨x1, …, xn⟩) =
n

∏
i=1

p(xi |xi−1), where x0 = * , xi ∈ 𝒱 ∪ {STOP}

x0 = *

Bi-gram Models



• N-gram models ( ) condition on  previous words





where  and 


• Example 3-gram model:


N > 1 N − 1

p(x1, …, xn) =
n

∏
i=1

p(xi |xi−(N−1), …, xi−1)

xi ∈ 𝒱 ∪ {STOP} x−N+2, …, x0 = *

p(the dog barks STOP) = p(the | * , * ) × p(dog | *, the) ×
p(barks | the, dog) × p(STOP |dog, barks)

N-gram Models



• Simplest case: unigrams 


• For all strings  (of any length): 


• Need to show the sum over string of all lengths 


(1) 


(2) 


(1)+(2) 

p(x̄) = p(⟨x1, …, xn⟩) = ∏n
i=1 p(xi)

x̄ p(x̄) ≥ 0

∑x̄ p(x̄) = 1

∑̄
x

p(x̄) =
∞

∑
n=1

∑
x1,…,xn

p(x1, …, xn)

∑
x1,…,xn

p(x1, …, xn) = ∑
x1,…,xn

n

∏
i=1

p(xi) = ∑
x1

⋯∑
xn

p(x1) × … × p(xn)

= ∑
x1

p(x1) × ⋯ × ∑
xn

p(xn) = (1 − ps)n−1 where ps = p(STOP)

∑̄
x

p(x̄) =
∞

∑
n=1

(1 − ps)n−1ps = ps

∞

∑
n=1

(1 − ps)n−1 = ps
1

1 − (1 − ps)
= 1

Well-defined Distributions
N-gram Models



• Simplest case: unigrams 


• For all strings  (of any length): 


• Need to show the sum over string of all lengths 


(1) 


(2) 


(1)+(2) 

p(x̄) = p(⟨x1, …, xn⟩) = ∏n
i=1 p(xi)

x̄ p(x̄) ≥ 0

∑x̄ p(x̄) = 1

∑̄
x

p(x̄) =
∞

∑
n=1

∑
x1,…,xn

p(x1, …, xn)

∑
x1,…,xn

p(x1, …, xn) = ∑
x1,…,xn

n

∏
i=1

p(xi) = ∑
x1

⋯∑
xn

p(x1) × … × p(xn)

= ∑
x1

p(x1) × ⋯ × ∑
xn

p(xn) = (1 − ps)n−1 where ps = p(STOP)

∑̄
x

p(x̄) =
∞

∑
n=1

(1 − ps)n−1ps = ps

∞

∑
n=1

(1 − ps)n−1 = ps
1

1 − (1 − ps)
= 1

Well-defined Distributions
N-gram Models Surprisingly neural 

network LMs are 
not necessarily well-
define distributions 
(Chen et al. 2018) 

http://aclweb.org/anthology/N18-1205.pdf


• N-gram models ( ) condition on  previous words





where  and 


• Sampling generalizes easily from unigrams and up:

N > 1 N − 1

p(x1, …, xn) =
n

∏
i=1

p(xi |xi−(N−1), …, xi−1)

xi ∈ 𝒱 ∪ {STOP} x−N+2, …, x0 = *

Sampling from N-gram models
N-gram Models

 
repeat 

 
 

until  
return 

i = 0

i + +
xi ∼ p(xi |xi−(N−1), …, xi−1)

xi = STOP
⟨x1, …, xi⟩



• The parameters of N-gram models are the probabilities 


• Maximum likelihood estimate has a closed-form solution: relative frequencies 


• 


• where  the empirical counts on the training set


• The general approach:


- Take a training set  and test set 


- Compute the ML estimates using 


- Use it to assign probabilities to other sentences, such as those in 


• Probabilities will be very small, so everything is done in log-space

qML(w) =
c(w)
c()

, qML(w |v) =
c(v, w)

c(v)
, qML(w |u, v) =

c(u, v, w)
c(u, v)

, …

c(), c(w), c(w, v), …

D D′ 

D

D′ 

Learning
N-gram Models

198015222 the first


194623024 the same


168504105 the following


158562063 the world


…


14112454 the door


-----------------


23135851162 the *


Training Counts

pML(door | the) =
14,112,454

2,313,581,162
= 0.0006



• As we increase N (higher-order N-grams), sparsity increases


• Counts becomes smaller and smaller, and there are more zeros

Learning
N-gram Models

198015222 the first

194623024 the same

168504105 the following

158562063 the world

…

14112454 the door

-----------------

23135851162 the *


197302  close the window 
191125  close the door 
152500  close the gap 
116451  close the thread 
87298    close the deal

-----------------

3785230 close the *


3380 please close the door

1601 please close the window

1164 please close the new

1159 please close the gate

…

0 please close the first

-----------------

13951 please close the *


Please close the door


Please close the first window on the left



• To him swallowed confess hear both. Which. Of save on trail for are ay device 
and rote life have gram 


• Hill he late speaks; or! a more to leg less first you enter


• Why dost stand forth thy canopy, forsooth; he is this palpable hit the King 
Henry. Live king. Follow.


• What means, sir. I confess she? then all sorts, he is trim, captain.


• Fly, and will rid me these news of price. Therefore the sadness of parting, as 
they say, ’tis done.


• This shall forbid it should be branded, if renown made it empty.


• King Henry. What! I will go seek the traitor Gloucester. Exeunt some of the 
watch. A great banquet serv’d in;


• It cannot be but so.

Approximating Shakespeare
N-gram Models

1-gram

2-gram

3-gram

4-gram



• 884,647 tokens, vocabulary size of =29,066


• Shakespeare produced 300,000 bigram types out of = 
844M possible bigrams


- So 99.96% of the possible bigrams were never seen (have zero 
entries in the table)


• Even worse with 4-grams: what's coming out looks like 
Shakespeare because it is Shakespeare


• More about this real soon … but first: evaluation

|𝒱 |

|𝒱 |2

Shakespeare as a Corpus
N-gram Models



• How good is our model? At what?


• The goal is not to just generate fake sentences!


- That would be easy to do well


- Higher order n-grams will always give better looking sentences


- But they are just overfitting — why?


• We want our model to prefer good sentences over bad ones


- Higher probability to real or frequent sentences 


‣ Than ungrammatical or rare ones


- How does this relate to how we use the language model? For example, in a 
noisy channel transcription system

How Good is our Model?
Evaluation



• We must test the model on data it hasn’t seen during learning


- Otherwise — overfitting! 😱


• We need an evaluation metric — two options:


- Extrinsic: focused on however the model will be used — for 
example, can it improve a transcription system?


- Intrinsic: focused on the language model task — how good 
can the model assign probabilities to real unseen data?


• Ideally, the two correlate, but reality is more complex

Testing
Evaluation



• Common metric for automatic speech transcription (ASR) evaluation


• Given an output  and a gold label :





• Extrinsic measures are more credible, but limited to a specific use and are harder to 
deploy


- You need the complete system, and often evaluating it is hard

x̄* x̄(i)

WER(x̄*, x(i)) =
# insertions + # deletions + # substitutions

# words in x̄(i)

Word Error Rate (WER)
Extrinsic Evaluation

: Andy saw a part of the moviex̄(i)

:  And he saw apart of the moviex̄*

WER(x̄*, x(i)) =
1 + 1 + 2

7
=

4
7

= 57 %



• How well can we predict the next word? 


When I eat pizza, I wipe of the ____


Many children are allergic to ____


I saw a ____


• Unigrams are terrible at this game (why?)


• A better model of text is one which assigns a higher probability 
to the word that actually occurs

The Shannon Game
Intrinsic Evaluation

grease 0.5
sauce 0.4
dust 0.05
…
mice 0.0001
…
the 1E-100



• The best language model is the one the is best at predicting the test set → will give 
test sentences the highest probability 


• Perplexity is the inverse probability of the test set, normalized by the number of words:


• Given a set of test sentences  with a total of  words:





• In practice, we work in log space:





• Lower perplexity is better


• What happens if we give a test sentence zero probability? 🤯

D′ m

PP(D′ ) = p(D′ )−1/m = ( ∏̄
x∈D′ 

p(x̄))−1/m

PP(D′ ) = 2− 1
m ∑x̄∈D′ log2 p(x̄)

Perplexity
Evaluation



• Under a uniform distribution perplexity will be the vocabulary size


• Assume  sentences consisting of  random digits, 


• What is the perplexity of this data for a model that assigns 
 to each digit





• Perplexity is weighted equivalent branching factor

M m |𝒱 | = 10

p( ⋅ ) = 1
10

PP = 2− 1
m ∑M

i=1 log2( 1
10 )|x̄(i)|

= 2− 1
m ∑M

i=1 |x̄(i)|log2
1

10

= 2−log2
1

10 = 2−log2 10−1 = 10

Perplexity of a Uniform Model
Evaluation



Perplexities of Contemporary Models
Evaluation

https://paperswithcode.com/sota/language-modelling-on-penn-treebank-word 

https://paperswithcode.com/sota/language-modelling-on-penn-treebank-word


• N-gram models work well if test data is looks like training corpus


- This is rarely the case, so need models that generalize


• Specifically, with n-gram models: new n-grams appear all the time


- New words too! More on that a bit later


• This means encountering zeros during test

Sparsity in Language Models

New words/word pairs






• A single n-gram with zero probability → the probability of the 
entire test set is zero


• Can’t even compute perplexity (can’t divide by zero)

p(offer |denied the) = 0

Zeros
Sparsity in Language Models

… denied the allegations

… denied the reports

… denied the claims

… denied the request

… denied the offer

… denied the loan


Training Set Test Set



• Estimating statistics from 
sparse data


• Smoothing steals 
probability mass to 
generalize better


• Very important across 
NLP, but easy to do badly


• Not gone in neural 
models, just implicit

Intuition
Smoothing

P(w | denied the)

  3 allegations


  2 reports


  1 claims


  1 request


  7 total 

P(w | denied the)

  2.5 allegations


  1.5 reports


  0.5 claims


  0.5 request

  2 other


  7 total

Smoothing



• Pretend we saw each word one more time than we did


• So, just add one to all counts


- And don’t forget to adjust normalization properly 





• Also called Laplace smoothing

pMLE(xi |xi−1) =
c(xi−1, xi)

c(xi−1)
⟶ pAdd−1(xi |xi−1) =

c(xi−1, xi) + 1
c(xi−1) + |𝒱 |

Add-one Estimation
Smoothing



• Add-k:





• Unigram prior smoothing:


pAdd−k(xi |xi−1) =
c(xi−1, xi) + k

c(xi−1) + k |𝒱 |

pAdd−U(xi |xi−1) =
c(xi−1, xi) + mp(xi)

c(xi−1) + m

Generalizing Add-one Smoothing
Smoothing



• can you tell me about any good cantonese restaurants close by


• mid priced thai food is what i’m looking for


• tell me about chez panisse


• can you give me a listing of the kinds of food that are available


• i’m looking for a good place to eat breakfast


• when is caffe venezia open during the day

Berkeley Restaurant Corpus



• Bigrams





• Unigram


Raw Counts (9222 sentences)
Berkeley Restaurant Corpus



Normalized Bi-gram Probabilities
Berkeley Restaurant Corpus

pMLE(xi |xi−1) =
c(xi−1, xi)

c(xi−1)



Counts with Add-one Smoothing
Berkeley Restaurant Corpus



Add-one Smoothed Bi-gram Probabilities
Berkeley Restaurant Corpus

pAdd−1(xi |xi−1) =
c(xi−1, xi) + 1
c(xi−1) + |𝒱 |



Reconstituted Counts
Berkeley Restaurant Corpus

pAdd−1(xi ∣ xi−1) =
c(xi−1, xi) + 1
c(xi−1) + V

c*(xi−1, xi) =
(c(xi−1, xi) + 1)c(xi−1)

c(xi−1) + V



Original vs. Reconstituted Counts
Berkeley Restaurant Corpus



• Simple, but very blunt instrument


• In practice, a relatively poor choice for n-gram language models


• But can be useful in domains where the number of zeros doesn’t 
dominate

Add-one Smoothing



• Sometimes it helps to use lower-order n-grams 


- Condition on less context, means you are more likely to have 
stronger support from the training data (i.e., more common event)


• Backoff: use lower-order n-gram


- For tri-gram, use tri-gram if you have good evidence, otherwise 
use bi-gram, otherwise unigram


• Linear interpolation: mix lower-order n-grams


- For tri-gram, mix with with bi-gram and unigram probabilities


• Interpolation works better 

Backoff and Linear Interpolation
Smoothing



• Simple interpolation








• Lambdas conditioned on context





• Are these well defined distributions? 

Pλ(xi |xi−1, xi−2) = λ3pMLE(xi |xi−1, xi−2) + λ2pMLE(xi |xi−1) + λ1pMLE(xi)

∑ λi = 1

Pλ(xi |xi−1, xi−2) = λ3(
xi−1
xi−2

)pMLE(xi |xi−1, xi−2)+

λ2(
xi−1
xi−2

)pMLE(xi |xi−1)+

λ1(
xi−1
xi−2

)pMLE(xi)

Linear Interpolation



• Use a held-out corpus


• Choose s to maximize the probability of the held-out data


- Fix MLE n-gram probabilities (on training data)


- Then search over  values to maximize the probability of the 
held-out data

λ

λ

How to Set the Lambdas?
Linear Interpolation



• General intuition: use the counts of rare events to estimate the 
probability of events we haven’t seen


• Used by many smoothing algorithms


- Good-Turing


- Knesser-Ney


- Witten-Bell

Advanced Methods
Smoothing



• Having more data is better, and 
techniques that scale win


• But requires crazy scaling tricks


- Pruning to only store estimates we 
trust


- Efficient data structures (e.g., tries)


- Bloom filters for approximate 
language models


- Storing words as indexes, not 
strings


- Using Huffman code for efficient 
index assignment 


- Quantize probabilities

Data Scale vs. Method
Smoothing 

http://www.aclweb.org/anthology/D07-1090.pdf 

Extrinsic evaluation using phrase-
based machine translation

http://www.aclweb.org/anthology/D07-1090.pdf


• If we know all the words in advance, vocabulary  is fixed → 
closed vocabulary task


• This is rare and unlike, and often, we can’t tell, and we have open 
vocabulary tasks


• Out of vocabulary = OOV words


• A lot of room for creativity around handling OOVs

𝒱

Unknown Words



• Create an unknown word token <UNK>


• Training of <UNK> probabilities


- Create a fixed lexicon L (e.g., rare words are not in L)


- At text normalization phase, any training word not in L changed 
to  <UNK>


- Now we estimate probabilities like a normal word


• At decoding time


- Normalize and use UNK probabilities for any word not in training

The Most Basic Approach
Unknown Words



We thank the following sources for presentation materials:


• Berkeley CS 288 by Alane Suhr and Dan Klein


• University of Washington CSE 517 by Luke Zettlemoyer


• Stanford CS 124 by Dan Jurafsky

Acknowledgements


