
Cornell CS 5740: Natural Language Processing
Yoav Artzi, Spring 2023

Raw Data
N-gram Language Models

Hyperboloids of
wondrous light

What?! I can’t
understand. It’s too

noisy

Alan Turing

Claude Shannon

Warren Weaver

I can help. I will
now proceed to

decode

But what can we
assume?

Andrey Markov

The Bombe

Language Models

From the Imitation Game (2014)

• Let a vocabulary be a finite set of tokens

• We can construct an infinite set of sentences (i.e., strings)

•

• Given: a dataset of example sentence

• Goal: estimate a probability distribution  
over sentences, s.t.,  
and

• Question: why would we ever want to do this?

𝒱

𝒱 = {the, a, man, telescope, Madrid, two, …}

x̄

𝒱† = {the, a, the a, the fan, the man, the man with the telescope, …}

𝒟 = {x̄(i)}M
i=1

∑x̄∈𝒱†
p(x̄) = 1

p(x̄) ≥ 0 for all x̄ ∈ 𝒱†

The Language Model Problem

p(the) = 10−12

p(a) = 10−13

p(the fan) = 10−12

p(the fan saw Beckham) = 2 × 10−8

p(the fan saw saw) = 10−15
…

• Goal: predict a sentence given some input

• The noisy channel approach:

• So, if is not great (i.e., noisy), can compensate

p(x̄ |a)

x̄* = arg max
x̄∈𝒱†

p(x̄ ∣ a)

= arg max
x̄∈𝒱†

p(a ∣ x̄)p(x̄)/p(a)

= arg max
x̄∈𝒱†

p(a ∣ x̄)p(x̄)

p(a | x̄) p(x̄)

The Noisy Channel Model
Language Models Use

Language model:
Distributions over
sequences of
words (sentences)

Input signal of
some sorts
(e.g., audio)

• Automatic speech recognition (ASR)

• Audio in , text out

• “Wreck a nice beach?”

- “Recognize speech”

• “Eye eight uh Jerry?”

- “I ate a cherry”

a x̄

Speech Recognition
The Noisy Channel Model

Acoustically Scored Hypotheses
Speech Recognition

the station signs are in deep in english -14732
the stations signs are in deep in english -14735
the station signs are in deep into english -14739
the station 's signs are in deep in english -14740
the station signs are in deep in the english -14741
the station signs are indeed in english -14757
the station 's signs are indeed in english -14760
the station signs are indians in english -14790
the station signs are indian in english -14799
the stations signs are indians in english -14807
the stations signs are indians and english -14815

• Let be an audio signal, a sentence, and:

- Source be a language model

- Channel be an acoustic model

• We decode from using Bayes rule:

a x̄

p(x̄)

p(a | x̄)

x̄ a

arg max
x̄

p(x̄ |a) = arg max
x̄

p(a | x̄)p(x̄)

ASR Noisy Channel System
Speech Recognition

“Also knowing nothing official about, but having guessed and
inferred considerable about, the powerful new mechanized
methods in cryptography—methods which I believe succeed even
when one does not know what language has been coded—one
naturally wonders if the problem of translation could conceivably
be treated as a problem in cryptography. When I look at an article
in Russian, I say: ‘This is really written in English, but it has been
coded in some strange symbols. I will now proceed to decode.’ ”

 Warren Weaver

 (1955:18, quoting a letter he wrote in 1947)

Translation
The Noisy Channel Model

• Let be a sentence in the source language, a sentence in the
target language, and:

- Source be a language model

- Channel be a translation model

• We decode from using Bayes rule:

f x̄

p(x̄)

p(f | x̄)

x̄ f

arg max
x̄

p(x̄ | f) = arg max
x̄

p(f | x̄)p(x̄)

MT Noisy Channel System
Translation

• Let be a sentence in the source language, a sentence in the
target language, and:

- Source be a language model

- Channel be an image model

• We decode from using Bayes rule:

I x̄

p(x̄)

p(I | x̄)

x̄ I

arg max
x̄

p(x̄ | I) = arg max
x̄

p(I | x̄)p(x̄)

Captioning Noisy Channel System
Caption Generation

• Assume that any problem can be described as text-to-text:

- What is the french translation of “I love Lucy”? → J'aime lucy

- What is the sentiment of “I Love Lucy”? → Very positive

• Then a language model can conceptually solve it by just
generating the answer as continuation

• So, language models can be universal text models

• Of course, that would have to be a really good language model

Universal Text Models
Language Models Use

Universal Text Models
Language Models Use

• Goal: estimate , where is a natural language sentence

• Learning input: observations of raw sentences

• Learning output: model to compute for any

• Probabilities should broadly indicate sentence plausibility

-

- Not only grammaticality:

- Generally, plausibility depends on context

p(x̄) x̄

M x̄

p(x̄) x̄

p(I saw a van) > > p(eyes aw of an)

p(artichokes intimidate zippers) ≈ 0

Learning Language Models

• Goal: estimate , where is a natural language sentence

• Learning input: observations of raw sentences

• Learning output: model to compute for any

• Option 1: empirical distribution over training sentences

• Problem: does not generalize at all!

- Need to be able to assign non-zero probabilities to unseen
sentences

p(x̄) x̄

M x̄

p(x̄) x̄

p(x̄) =
c(x̄)
M

, where c is the counting function

Learning Language Models

• Goal: estimate , where is a natural language sentence

• Learning input: observations of raw sentences

• Learning output: model to compute for any

• Option 1: empirical distribution over training sentences

• Problem: does not generalize at all!

- Need to be able to assign non-zero probabilities to unseen
sentences

p(x̄) x̄

M x̄

p(x̄) x̄

p(x̄) =
c(x̄)
M

, where c is the counting function

Learning Language Models

• Assume: the choice of each word in depends
on previous words only

• Better?

xi x̄ = ⟨x1, …, xn⟩

p(x̄) =
n

∏
i=1

p(xi |x1, …, xi−1)

Probability Decomposition

• Decompose using the chain rule: the choice of each word in
 depends on previous words only

• Better?

- Yes, but not really: last word still represents the complete
sentence event, and will zero everything

- So, back to square one

xi
x̄ = ⟨x1, …, xn⟩

p(x̄) =
n

∏
i=1

p(xi |x1, …, xi−1)

Probability Decomposition

• Decompose using the chain rule: the choice of each word in
 depends on previous words only

• Better?

xi
x̄ = ⟨x1, …, xn⟩

p(x̄) =
n

∏
i=1

p(xi |x1, …, xi−1)

Probability Decomposition

• Markov property refers to the memoryless property of a
stochastic process (i.e., future decision are independent of the
past)

• A stochastic model can assume the Markov property

• It’s a simplifying approximation — no free lunch!

p(english | this is really in) ≈
p(english | is really in) ≈
p(english | really in) ≈
p(english | in) ≈
p(english)

Markov Assumption
Probability Decomposition

• The most crude approximation: unigrams

where

• Can easily compute the probability of a given sentence

• And can also generate!

p(x̄) = p(⟨x1, …, xn⟩) =
n

∏
i=1

p(xi)

xi ∈ 𝒱 ∪ {STOP}

Unigram Models

repeat

until
return

i = 0

i + +
xi ∼ p(x)

xi = STOP
⟨x1, …, xi⟩

• The most crude approximation: unigrams

• Let’s generate:

- [thrift, did, eighty, said, hard, 'm, july, bullish]

- []

- [after, any, on, consistently, hospital, lake, of, of, other, and, factors, raised, analyst,
too, allowed, mexico, never, consider, fall, bungled, davison, that, obtain, price, lines,
the, to, sass, the, the, further, board, a, details, machinists, between, nasdaq]

• Why is it bad?

• Big problem with unigrams:

p(x̄) = p(⟨x1, …, xn⟩) =
n

∏
i=1

p(xi)

p(the the the the) > > p(I like icecream)

Unigram Models

• The most crude approximation: unigrams

• Let’s generate:

- [thrift, did, eighty, said, hard, 'm, july, bullish]

- []

- [after, any, on, consistently, hospital, lake, of, of, other, and, factors, raised, analyst,
too, allowed, mexico, never, consider, fall, bungled, davison, that, obtain, price, lines,
the, to, sass, the, the, further, board, a, details, machinists, between, nasdaq]

• Why is it bad?

• Big problem with unigrams:

p(x̄) = p(⟨x1, …, xn⟩) =
n

∏
i=1

p(xi)

p(the the the the) > > p(I like icecream)

Unigram Models

• Relaxing the strict Markov assumption a bit: bi-grams

• Why do we need ?

• Examples:

- [texaco, rose, one, in, this, issue, is, pursuing, growth, in, a, boiler, house, said, mr., gurria,
mexico, 's, motion, control, proposal, without, permission, from, five, hundred, fifty, five, yen]

- [although, common, shares, rose, forty, six, point, four, hundred, dollars, from, thirty,
seconds, at, the, greatest, play, disingenuous, to, be, reset, annually, the, buy, out, of,
american, brands, vying, for, mr., womack, currently, sharedata, incorporated, believe,
chemical, prices, undoubtedly, will, be, as, much, is, scheduled, to, conscientious, teaching]

- [this, would, be, a, record, november]

• No free lunch: what’s the cost compared to unigram models?

p(x̄) = p(⟨x1, …, xn⟩) =
n

∏
i=1

p(xi |xi−1), where x0 = * , xi ∈ 𝒱 ∪ {STOP}

x0 = *

Bi-gram Models

• N-gram models () condition on previous words

where and

• Example 3-gram model:

N > 1 N − 1

p(x1, …, xn) =
n

∏
i=1

p(xi |xi−(N−1), …, xi−1)

xi ∈ 𝒱 ∪ {STOP} x−N+2, …, x0 = *

p(the dog barks STOP) = p(the | * , *) × p(dog | *, the) ×
p(barks | the, dog) × p(STOP |dog, barks)

N-gram Models

• Simplest case: unigrams

• For all strings (of any length):

• Need to show the sum over string of all lengths

(1)

(2)

(1)+(2)

p(x̄) = p(⟨x1, …, xn⟩) = ∏n
i=1 p(xi)

x̄ p(x̄) ≥ 0

∑x̄ p(x̄) = 1

∑̄
x

p(x̄) =
∞

∑
n=1

∑
x1,…,xn

p(x1, …, xn)

∑
x1,…,xn

p(x1, …, xn) = ∑
x1,…,xn

n

∏
i=1

p(xi) = ∑
x1

⋯∑
xn

p(x1) × … × p(xn)

= ∑
x1

p(x1) × ⋯ × ∑
xn

p(xn) = (1 − ps)n−1 where ps = p(STOP)

∑̄
x

p(x̄) =
∞

∑
n=1

(1 − ps)n−1ps = ps

∞

∑
n=1

(1 − ps)n−1 = ps
1

1 − (1 − ps)
= 1

Well-defined Distributions
N-gram Models

• Simplest case: unigrams

• For all strings (of any length):

• Need to show the sum over string of all lengths

(1)

(2)

(1)+(2)

p(x̄) = p(⟨x1, …, xn⟩) = ∏n
i=1 p(xi)

x̄ p(x̄) ≥ 0

∑x̄ p(x̄) = 1

∑̄
x

p(x̄) =
∞

∑
n=1

∑
x1,…,xn

p(x1, …, xn)

∑
x1,…,xn

p(x1, …, xn) = ∑
x1,…,xn

n

∏
i=1

p(xi) = ∑
x1

⋯∑
xn

p(x1) × … × p(xn)

= ∑
x1

p(x1) × ⋯ × ∑
xn

p(xn) = (1 − ps)n−1 where ps = p(STOP)

∑̄
x

p(x̄) =
∞

∑
n=1

(1 − ps)n−1ps = ps

∞

∑
n=1

(1 − ps)n−1 = ps
1

1 − (1 − ps)
= 1

Well-defined Distributions
N-gram Models Surprisingly neural

network LMs are
not necessarily well-
define distributions
(Chen et al. 2018)

http://aclweb.org/anthology/N18-1205.pdf

• N-gram models () condition on previous words

where and

• Sampling generalizes easily from unigrams and up:

N > 1 N − 1

p(x1, …, xn) =
n

∏
i=1

p(xi |xi−(N−1), …, xi−1)

xi ∈ 𝒱 ∪ {STOP} x−N+2, …, x0 = *

Sampling from N-gram models
N-gram Models

repeat

until
return

i = 0

i + +
xi ∼ p(xi |xi−(N−1), …, xi−1)

xi = STOP
⟨x1, …, xi⟩

• The parameters of N-gram models are the probabilities

• Maximum likelihood estimate has a closed-form solution: relative frequencies

•

• where the empirical counts on the training set

• The general approach:

- Take a training set and test set

- Compute the ML estimates using

- Use it to assign probabilities to other sentences, such as those in

• Probabilities will be very small, so everything is done in log-space

qML(w) =
c(w)
c()

, qML(w |v) =
c(v, w)

c(v)
, qML(w |u, v) =

c(u, v, w)
c(u, v)

, …

c(), c(w), c(w, v), …

D D′

D

D′

Learning
N-gram Models

198015222 the first

194623024 the same

168504105 the following

158562063 the world

…

14112454 the door

23135851162 the *

Training Counts

pML(door | the) =
14,112,454

2,313,581,162
= 0.0006

• As we increase N (higher-order N-grams), sparsity increases

• Counts becomes smaller and smaller, and there are more zeros

Learning
N-gram Models

198015222 the first

194623024 the same

168504105 the following

158562063 the world

…

14112454 the door

23135851162 the *

197302 close the window
191125 close the door
152500 close the gap
116451 close the thread
87298 close the deal

3785230 close the *

3380 please close the door

1601 please close the window

1164 please close the new

1159 please close the gate

…

0 please close the first

13951 please close the *

Please close the door

Please close the first window on the left

• To him swallowed confess hear both. Which. Of save on trail for are ay device
and rote life have gram

• Hill he late speaks; or! a more to leg less first you enter

• Why dost stand forth thy canopy, forsooth; he is this palpable hit the King
Henry. Live king. Follow.

• What means, sir. I confess she? then all sorts, he is trim, captain.

• Fly, and will rid me these news of price. Therefore the sadness of parting, as
they say, ’tis done.

• This shall forbid it should be branded, if renown made it empty.

• King Henry. What! I will go seek the traitor Gloucester. Exeunt some of the
watch. A great banquet serv’d in;

• It cannot be but so.

Approximating Shakespeare
N-gram Models

1-gram

2-gram

3-gram

4-gram

• 884,647 tokens, vocabulary size of =29,066

• Shakespeare produced 300,000 bigram types out of =
844M possible bigrams

- So 99.96% of the possible bigrams were never seen (have zero
entries in the table)

• Even worse with 4-grams: what's coming out looks like
Shakespeare because it is Shakespeare

• More about this real soon … but first: evaluation

|𝒱 |

|𝒱 |2

Shakespeare as a Corpus
N-gram Models

• How good is our model? At what?

• The goal is not to just generate fake sentences!

- That would be easy to do well

- Higher order n-grams will always give better looking sentences

- But they are just overfitting — why?

• We want our model to prefer good sentences over bad ones

- Higher probability to real or frequent sentences

‣ Than ungrammatical or rare ones

- How does this relate to how we use the language model? For example, in a
noisy channel transcription system

How Good is our Model?
Evaluation

• We must test the model on data it hasn’t seen during learning

- Otherwise — overfitting! 😱

• We need an evaluation metric — two options:

- Extrinsic: focused on however the model will be used — for
example, can it improve a transcription system?

- Intrinsic: focused on the language model task — how good
can the model assign probabilities to real unseen data?

• Ideally, the two correlate, but reality is more complex

Testing
Evaluation

• Common metric for automatic speech transcription (ASR) evaluation

• Given an output and a gold label :

• Extrinsic measures are more credible, but limited to a specific use and are harder to
deploy

- You need the complete system, and often evaluating it is hard

x̄* x̄(i)

WER(x̄*, x(i)) =
insertions + # deletions + # substitutions

words in x̄(i)

Word Error Rate (WER)
Extrinsic Evaluation

: Andy saw a part of the moviex̄(i)

: And he saw apart of the moviex̄*

WER(x̄*, x(i)) =
1 + 1 + 2

7
=

4
7

= 57 %

• How well can we predict the next word?

When I eat pizza, I wipe of the ____

Many children are allergic to ____

I saw a ____

• Unigrams are terrible at this game (why?)

• A better model of text is one which assigns a higher probability
to the word that actually occurs

The Shannon Game
Intrinsic Evaluation

grease 0.5
sauce 0.4
dust 0.05
…
mice 0.0001
…
the 1E-100

• The best language model is the one the is best at predicting the test set → will give
test sentences the highest probability

• Perplexity is the inverse probability of the test set, normalized by the number of words:

• Given a set of test sentences with a total of words:

• In practice, we work in log space:

• Lower perplexity is better

• What happens if we give a test sentence zero probability? 🤯

D′ m

PP(D′) = p(D′)−1/m = (∏̄
x∈D′

p(x̄))−1/m

PP(D′) = 2− 1
m ∑x̄∈D′ log2 p(x̄)

Perplexity
Evaluation

• Under a uniform distribution perplexity will be the vocabulary size

• Assume sentences consisting of random digits,

• What is the perplexity of this data for a model that assigns
 to each digit

• Perplexity is weighted equivalent branching factor

M m |𝒱 | = 10

p(⋅) = 1
10

PP = 2− 1
m ∑M

i=1 log2(1
10)|x̄(i)|

= 2− 1
m ∑M

i=1 |x̄(i)|log2
1

10

= 2−log2
1

10 = 2−log2 10−1 = 10

Perplexity of a Uniform Model
Evaluation

Perplexities of Contemporary Models
Evaluation

https://paperswithcode.com/sota/language-modelling-on-penn-treebank-word

https://paperswithcode.com/sota/language-modelling-on-penn-treebank-word

• N-gram models work well if test data is looks like training corpus

- This is rarely the case, so need models that generalize

• Specifically, with n-gram models: new n-grams appear all the time

- New words too! More on that a bit later

• This means encountering zeros during test

Sparsity in Language Models

New words/word pairs

• A single n-gram with zero probability → the probability of the
entire test set is zero

• Can’t even compute perplexity (can’t divide by zero)

p(offer |denied the) = 0

Zeros
Sparsity in Language Models

… denied the allegations

… denied the reports

… denied the claims

… denied the request

… denied the offer

… denied the loan

Training Set Test Set

• Estimating statistics from
sparse data

• Smoothing steals
probability mass to
generalize better

• Very important across
NLP, but easy to do badly

• Not gone in neural
models, just implicit

Intuition
Smoothing

P(w | denied the)

 3 allegations

 2 reports

 1 claims

 1 request

 7 total

P(w | denied the)

 2.5 allegations

 1.5 reports

 0.5 claims

 0.5 request

 2 other

 7 total

Smoothing

• Pretend we saw each word one more time than we did

• So, just add one to all counts

- And don’t forget to adjust normalization properly

• Also called Laplace smoothing

pMLE(xi |xi−1) =
c(xi−1, xi)

c(xi−1)
⟶ pAdd−1(xi |xi−1) =

c(xi−1, xi) + 1
c(xi−1) + |𝒱 |

Add-one Estimation
Smoothing

• Add-k:

• Unigram prior smoothing:

pAdd−k(xi |xi−1) =
c(xi−1, xi) + k

c(xi−1) + k |𝒱 |

pAdd−U(xi |xi−1) =
c(xi−1, xi) + mp(xi)

c(xi−1) + m

Generalizing Add-one Smoothing
Smoothing

• can you tell me about any good cantonese restaurants close by

• mid priced thai food is what i’m looking for

• tell me about chez panisse

• can you give me a listing of the kinds of food that are available

• i’m looking for a good place to eat breakfast

• when is caffe venezia open during the day

Berkeley Restaurant Corpus

• Bigrams

• Unigram

Raw Counts (9222 sentences)
Berkeley Restaurant Corpus

Normalized Bi-gram Probabilities
Berkeley Restaurant Corpus

pMLE(xi |xi−1) =
c(xi−1, xi)

c(xi−1)

Counts with Add-one Smoothing
Berkeley Restaurant Corpus

Add-one Smoothed Bi-gram Probabilities
Berkeley Restaurant Corpus

pAdd−1(xi |xi−1) =
c(xi−1, xi) + 1
c(xi−1) + |𝒱 |

Reconstituted Counts
Berkeley Restaurant Corpus

pAdd−1(xi ∣ xi−1) =
c(xi−1, xi) + 1
c(xi−1) + V

c*(xi−1, xi) =
(c(xi−1, xi) + 1)c(xi−1)

c(xi−1) + V

Original vs. Reconstituted Counts
Berkeley Restaurant Corpus

• Simple, but very blunt instrument

• In practice, a relatively poor choice for n-gram language models

• But can be useful in domains where the number of zeros doesn’t
dominate

Add-one Smoothing

• Sometimes it helps to use lower-order n-grams

- Condition on less context, means you are more likely to have
stronger support from the training data (i.e., more common event)

• Backoff: use lower-order n-gram

- For tri-gram, use tri-gram if you have good evidence, otherwise
use bi-gram, otherwise unigram

• Linear interpolation: mix lower-order n-grams

- For tri-gram, mix with with bi-gram and unigram probabilities

• Interpolation works better

Backoff and Linear Interpolation
Smoothing

• Simple interpolation

• Lambdas conditioned on context

• Are these well defined distributions?

Pλ(xi |xi−1, xi−2) = λ3pMLE(xi |xi−1, xi−2) + λ2pMLE(xi |xi−1) + λ1pMLE(xi)

∑ λi = 1

Pλ(xi |xi−1, xi−2) = λ3(
xi−1
xi−2

)pMLE(xi |xi−1, xi−2)+

λ2(
xi−1
xi−2

)pMLE(xi |xi−1)+

λ1(
xi−1
xi−2

)pMLE(xi)

Linear Interpolation

• Use a held-out corpus

• Choose s to maximize the probability of the held-out data

- Fix MLE n-gram probabilities (on training data)

- Then search over values to maximize the probability of the
held-out data

λ

λ

How to Set the Lambdas?
Linear Interpolation

• General intuition: use the counts of rare events to estimate the
probability of events we haven’t seen

• Used by many smoothing algorithms

- Good-Turing

- Knesser-Ney

- Witten-Bell

Advanced Methods
Smoothing

• Having more data is better, and
techniques that scale win

• But requires crazy scaling tricks

- Pruning to only store estimates we
trust

- Efficient data structures (e.g., tries)

- Bloom filters for approximate
language models

- Storing words as indexes, not
strings

- Using Huffman code for efficient
index assignment

- Quantize probabilities

Data Scale vs. Method
Smoothing

http://www.aclweb.org/anthology/D07-1090.pdf

Extrinsic evaluation using phrase-
based machine translation

http://www.aclweb.org/anthology/D07-1090.pdf

• If we know all the words in advance, vocabulary is fixed →
closed vocabulary task

• This is rare and unlike, and often, we can’t tell, and we have open
vocabulary tasks

• Out of vocabulary = OOV words

• A lot of room for creativity around handling OOVs

𝒱

Unknown Words

• Create an unknown word token <UNK>

• Training of <UNK> probabilities

- Create a fixed lexicon L (e.g., rare words are not in L)

- At text normalization phase, any training word not in L changed
to <UNK>

- Now we estimate probabilities like a normal word

• At decoding time

- Normalize and use UNK probabilities for any word not in training

The Most Basic Approach
Unknown Words

We thank the following sources for presentation materials:

• Berkeley CS 288 by Alane Suhr and Dan Klein

• University of Washington CSE 517 by Luke Zettlemoyer

• Stanford CS 124 by Dan Jurafsky

Acknowledgements

