Raw Data Word Embeddings

Cornell CS 5740: Natural Language Processing Yoav Artzi, Spring 2023

Raw Data

- Raw text = human-created languge without any additional annotation
- A natural by-product of human use of language
- Abundant in text form for many domains and scenarios, but not for all
- How can learn without any annotation? What kind of representations can we get? How can we use them?
- Key idea: self-supervised learning

Raw Data

Self-supervised Learning

- Given: raw data without any annotation
- Formalize a prediction training objective that is using this data only
- Common approach: given one piece of the data, predict another
- The prediction task is often not interesting on its own
- But the learned representations are!
- Big advantage: can use as much data as you can find and have compute for
- In contrast, supervised learning relies on enriching the data with human annotations

Lexical Semantics

- Subfield of linguistics concerned with word meaning
- A very broad subfield
- We focus on common instantiations of it in contemporary NLP:
 - Word senses
 - Distributional semantics
 - Word2vec

Lemma and Wordform

- A lemma (or citation form)
 - Basic part of the word, same stem, rough semantics
- A surface form (or word form)
 - The word as it appears in text (i.e., the string)

Surface Form	Lemma	
banks	bank	
sung	sing	
duermes	dormir	

Lemma

- One lemma can have many meanings:
 - ...a **bank** can hold the investments in a custodial account...
 - ...as agriculture burgeons on the east **bank** the river will shrink even more
- Sense (or word sense)
 - A discrete representation of an aspect of a word's meaning

Lemma

- One lemma can have many meanings:
 - ...a **bank**₁ can hold the investments in a custodial account...
 - ...as agriculture burgeons on the east bank₂ the river will shrink even more
- **Sense** (or word sense)
 - A discrete representation of an aspect of a word's meaning
 - The lemma *bank* here has two senses

Homonymy

- **Homonyms**: words that share a form but have unrelated, distinct meanings:
 - bank₁: financial institution, bank₂: sloping land
 - bat₁: club for hitting a ball, bat₂: nocturnal flying mammal
- Homographs: same written form
 - Bank/bank, bat/bat
- Homophones: same spoken form
 - Write and right, piece and peace

Word Senses Who Cares?

- Capturing such sense distinctions is important for many NLP problems
- Including very practical ones:
 - Information retrieval / question answering
 - bat care / how do I care for my bat?
 - Machine translation
 - bat: murciélago (animal) or bate (for baseball)
 - Text-to-speech
 - bass (stringed instrument) vs. bass (fish)

Who Cares?

- Can break common semantic expectations
- So an interesting test case for even the latest and largest model
- For example, GPT4V
 - generate an image of a baseball player caring for his bat in the cave where he lives with all the other bats

Word Senses Zeugma

- A quick test to identify multi-sense words
- Zeugma: when a word applies to two others in different senses
 - Which flights **serve** breakfast?
 - Does Lufthansa serve Philadelphia?
 - Does Lufthansa **serve** breakfast and Philadelphia?
- The conjunction sounds "weird"
 - Because we have two sense for serve

Synonyms

- Word that have the same meaning in some or all contexts.
 - filbert / hazelnut ; couch / sofa ; big / large
 - automobile / car ; vomit / throw up ; Water / H20
- Two words are synonyms if ...
 - ... they can be substituted for each other
- Very few (if any) examples of perfect synonymy
 - Often have different notions of politeness, slang, etc.

Synonyms

- Perfect synonymy is rare
- Consider the words big and large are they synonyms?
 - How big is that plane? Would I be flying on a large or small plane?
- How about here:
 - Miss Nelson became a kind of big sister to Benjamin.
 - Miss Nelson became a kind of large sister to Benjamin.
- Why?
 - big has a sense that means being older, or grown up
 - large lacks this sense
- Synonymous relations are defined between senses

Sense and Word Relations Antonyms

• Senses that are opposites with respect to one feature of meaning. Otherwise, they are very similar!

dark	short	fast	rise	hot	up	in
light	long	slow	fall	could	down	out

- Antonyms can
 - Define a binary opposition: in/out
 - Be at the opposite ends of a scale: fast/slow
 - Be reversives: rise/fall
- Very tricky to handle with some representations remember for a bit later!

Sense and Word Relations Hyponymy and Hypernymy

- One sense is a **hyponym/subordinate** of another if the first sense is more specific, denoting a subclass of the other
 - car is a hyponym of vehicle
 - mango is a hyponym of fruit
- Conversely hypernym/superordinate ("hyper is super")
 - vehicle is a hypernym of car
 - fruit is a hypernym of mango
- Usually transitive
 - (A hypo B and B hypo C entails A hypo C)

Hypernym	vehicle	fuirt	furniture	
Hyponym car		mango	chair	

- A hierarchically organized lexical database
- On-line thesaurus + aspects of a dictionary
 - Word senses and sense relations
 - Some other languages available (Arabic, Finnish, German, Portuguese...)
 - Various software support it

Category	Unique Strings	
Noun	117798	
Verb	11529	
Adjective	22479	
Adverb	4481	

WordNet Search - 3.1

- WordNet home page - Glossary - Help

Word to search for: bass

Search WordNet

Display Options: (Select option to change)
Change

Key: "S:" = Show Synset (semantic) relations, "W:" = Show Word (lexical) relations Display options for sense: (gloss) "an example sentence"

Noun

- <u>S:</u> (n) bass (the lowest part of the musical range)
- <u>S:</u> (n) bass, bass part (the lowest part in polyphonic music)
- S: (n) bass, basso (an adult male singer with the lowest voice)
- <u>S:</u> (n) <u>sea bass</u>, **bass** (the lean flesh of a saltwater fish of the family Serranidae)
- <u>S:</u> (n) <u>freshwater bass</u>, bass (any of various North American freshwater fish with lean flesh (especially of the genus Micropterus))
- <u>S:</u> (n) bass, <u>bass voice</u>, <u>basso</u> (the lowest adult male singing voice)
- <u>S:</u> (n) bass (the member with the lowest range of a family of musical instruments)
- <u>S:</u> (n) **bass** (nontechnical name for any of numerous edible marine and freshwater spiny-finned fishes)

Adjective

• <u>S:</u> (adj) **bass**, <u>deep</u> (having or denoting a low vocal or instrumental range) "a deep voice"; "a bass voice is lower than a baritone voice"; "a bass clarinet"

http://wordnetweb.princeton.edu/perl/webwn

- S: (n) bass, basso (an adult male singer with the lowest voice)
 - direct hypernym / inherited hypernym / sister term
 - S: (n) singer, vocalist, vocalizer, vocaliser (a person who sings)
 - S: (n) musician, instrumentalist, player (someone who plays a musical instrument (as a profession))
 - <u>S:</u> (n) performer, performing artist (an entertainer who performs a dramatic or musical work for an audience)
 - <u>S:</u> (n) <u>entertainer</u> (a person who tries to please or amuse)
 - <u>S: (n) person, individual, someone, somebody, mortal, soul</u> (a human being) *"there was too much for one person to do"*
 - <u>S:</u> (n) <u>organism</u>, <u>being</u> (a living thing that has (or can develop) the ability to act or function independently)
 - <u>S:</u> (n) living thing, animate thing (a living (or once living) entity)
 - <u>S:</u> (n) whole, unit (an assemblage of parts that is regarded as a single entity) "how big is that part compared to the whole?"; "the team is a unit"
 - <u>S: (n) object</u>, <u>physical object</u> (a tangible and visible entity; an entity that can cast a shadow) *"it was full of rackets, balls and other objects"*
 - S: (n) physical entity (an entity that has physical existence)
 - S: (n) <u>entity</u> (that which is perceived or known or inferred to have its own distinct existence (living or nonliving))

http://wordnetweb.princeton.edu/perl/webwn

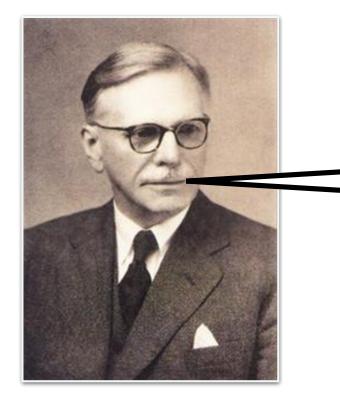
WordNet Senses and Synsets

- Each word in WordNet has at least one sense, each sense has a gloss (textual description)
- The synset (synonym set), the set of near-synonyms, is a set of senses with a shared gloss
 - Example: chump as a noun with the gloss:
 - "a person who is gullible and easy to take advantage of"
 - This sense of "chump" is shared with 9 words:

chump₁, fool₂, gull₁, mark₉, patsy₁,

fall guy₁, sucker₁, soft touch₁, mug₂

- All these senses have the same gloss \rightarrow they form a synset


WordNet Noun Relations

| Relation | Also called | Definition | Example |
|----------------|---------------|---|-------------------------------------|
| Hypernym | Superordinate | From concepts to superordinates | $break fast^1 ightarrow meal^1$ |
| Hyponym | Subordinate | From concepts to subtypes | $meal^1 ightarrow lunch^1$ |
| Member Meronym | Has-Member | From groups to their members | $faculty^2 \rightarrow professor^1$ |
| Has-Instance | | From concepts to instances of the concept | $composer^1 ightarrow Bach^1$ |
| Instance | | From instances to their concepts | $Austen^1 ightarrow author^1$ |
| Member Holonym | Member-Of | From members to their groups | $copilot^1 ightarrow crew^1$ |
| Part Meronym | Has-Part | From wholes to parts | $table^2 \rightarrow leg^3$ |
| Part Holonym | Part-Of | From parts to wholes | $course^7 ightarrow meal^1$ |
| Antonym | | Opposites | $leader^1 \rightarrow follower^1$ |

Lexical Machine Learning Problems

- Various ML problem have been studied extensively in NLP
- WordNet has been an important resource for building ML models
- Example: word-sense disambiguation
 - Given a word in context, what sense from an existing ontology (e.g., WordNet) is used

The Distributional Hypothesis

You shall know a word by the company it keeps

- John Firth, 1957

A bottle of Tesgüino is on the table.

Everybody likes tesgüino.

Tesgüino makes you drunk.

We make tesgüino out of corn.

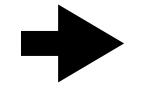
A bottle of Tesgüino is on the table.

Everybody likes tesgüino.

Tesgüino makes you drunk.

We make tesgüino out of corn.

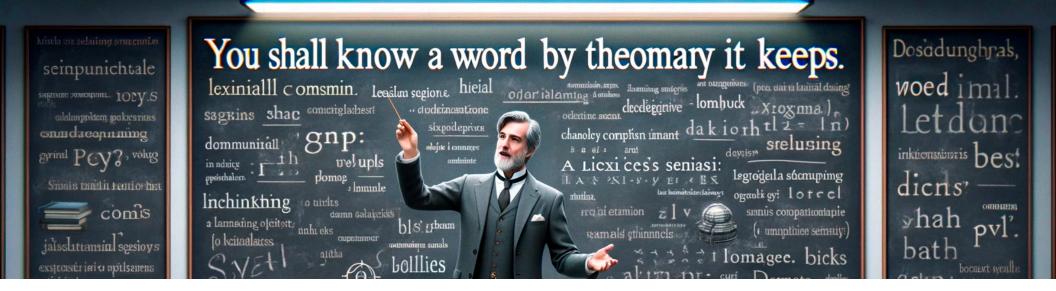
- Occurs before drunk
- Occurs after bottle
- Is the direct object of likes


A bottle of Tesgüino is on the table.

Everybody likes tesgüino.

Tesgüino makes you drunk.

We make tesgüino out of corn.

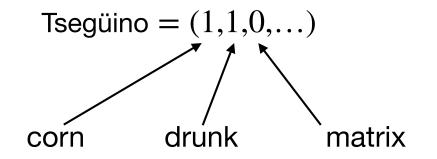

- Occurs before drunk
- Occurs after bottle
- Is the direct object of likes

Similar to beer, wine, whiskey, ...

Distributional Semantics The Distributional Hypothesis

- Words that are used and occur in the same **<u>context</u>** tend to have similar meaning
- Similarity-based generalization: children can figure out how to <u>use</u> words by generalizing about their <u>use</u> from distributions of similar words
- The more semantically similar words are, the more distributionally similar they are
- But, what is the semantics of meaning? Hard question 😅, let's skip it!
- What is context? Informally: whatever you can get your hands on that makes sense!

Vector-space Models


- Words represented by vectors
 - Often called **embeddings**, especially when low-dimensional and dense
- In contrast to discrete class representation of word senses
- Sparse (high dimensional) vs. dense (low dimensional)

Sparse Representations

- Given a vocabulary of *n* words
- Let f_i , i = 1...n be a binary (or count) indictor for the presence (or count) of the *i*-th word in the vocabulary
- Represent a word w as, where f_i are computed in contexts of all uses of w:

$$w = (f_1, f_2, f_3, \dots, f_n)$$

• For example:

Measuring Similarity

Tsegüino = (1,1,0,...)beer = (0,1,0,...)

- Similarity can be measured using vector distance measures
- For example, cosine similarity:

similarity(w, u) =
$$\frac{w \cdot u}{\|w\| \|u\|} = \frac{\sum_{i=1}^{n} w_i u_i}{\sqrt{\sum_{i=1}^{n} w_i^2} \sqrt{\sum_{i=1}^{n} u_i^2}}$$

which gives values between -1 (completely different), 0 (orthogonal), and 1 (completely identical)

Word2vec

- Widely-used method for learning word vectors from raw text
 - Another common method: GloVe
- Goal: good word embeddings
 - Embeddings are vectors in a low dimensional space
 - Similar words should be close to one another
- Key insight: self-supervised learning
- Two models:
 - Skip-gram (today)
 - CBOW (further reading: Mikolov et al. 2013)

- Given: corpus D of pairs (w, c) where w is a word and c is context
- Context can be a single neighboring word in a window of size \boldsymbol{k}
 - But there are other common definitions
- Consider the probability parameterized by $\boldsymbol{\theta}$

 $p(c | w; \theta)$

• Objective: maximize the corpus probability

$$\arg\max_{\theta} \prod_{(w,c)\in D} p(c \,|\, w; \theta)$$

• How do we parametrize the probability distribution?

• Objective: maximize the corpus probability

$$\arg\max_{\theta} \prod_{(w,c)\in D} p(c \,|\, w; \theta)$$

• Where:

$$p(c \mid w; \theta) = \frac{e^{v_c \cdot v_w}}{\sum_{c' \in C} e^{v_c \cdot v_w}}$$

 Let d be the dimensionality of the vectors, how many parameters do we have?

• Objective: maximize the corpus probability

$$\arg\max_{\theta} \prod_{(w,c)\in D} p(c \,|\, w; \theta)$$

• Where:

$$p(c \mid w; \theta) = \frac{e^{v_c \cdot v_w}}{\sum_{c' \in C} e^{v_c \cdot v_w}}$$

 Let d be the dimensionality of the vectors, how many parameters do we have?

$$d \times |V| + d \times |C|$$

• Objective: maximize the likelihood for the data (i.e., corpus)

$$\arg\max_{\theta} \prod_{(w,c)\in D} p(c \,|\, w; \theta)$$

• The log of the objective is:

$$\arg\max_{\theta} \sum_{(w,c)\in D} \left(\log e^{v_c \cdot v_w} - \log \sum_{c'\in C} e^{v_{c'} \cdot v_w}\right)$$

• Any issue?

• Objective: maximize the likelihood for the data (i.e., corpus)

$$\arg\max_{\theta} \prod_{(w,c)\in D} p(c \,|\, w; \theta)$$

• The log of the objective is:

$$\arg\max_{\theta} \sum_{(w,c)\in D} \left(\log e^{v_c \cdot v_w} - \log \sum_{c'\in C} e^{v_c' \cdot v_w}\right)$$

- Not tractable in practice
 - Sum over all context words intractable
 - Approximate via negative sampling

Word2vec

Negative Sampling for Skip-gram

- **Negative sampling** is a general approach to approximate objectives that are intractable due to large internal sum
- Here: instantiated specifically for word2vec
- Consider a word-context pair (w, c)
- Let the binary probability that the pair (w, c) was observed:

$$p(D=1 \mid w, c)$$

• So the probability that it was not observed is

$$p(D = 0 | w, c) = 1 - p(D = 1 | w, c)$$

Negative Sampling for Skip-gram

• Let the probability that the pair (w, c) was observed:

$$p(D=1 \,|\, w,c)$$

• Parameterize this binary distribution as:

$$p(D = 1 | w, c) = \frac{1}{1 + e^{-v_c \cdot v_w}}$$

• New Learning objective:

$$\arg \max_{\theta} \prod_{(w,c)\in D} p(D=1 \mid w, c) \prod_{(w,c)\in D'} p(D=0 \mid w, c)$$

• Basically: increase the probability of seen pairs, decrease of unseen ones

Negative Sampling for Skip-gram

• Let the probability that the pair (w, c) was observed:

$$p(D=1 \,|\, w,c)$$

• Parameterize this binary distribution as:

$$p(D = 1 | w, c) = \frac{1}{1 + e^{-v_c \cdot v_w}}$$

• New Learning objective:

$$\arg \max_{\theta} \prod_{(w,c)\in D} p(D=1 \mid w, c) \prod_{(w,c)\in D'} p(D=0 \mid w, c)$$

- Basically: increase the probability of seen pairs, decrease of unseen ones
- Unseen?! Need to get D'

Negative Sampling

- For a given l, the size of D' is l-times bigger than D
- Each context *c* is a word
- For each observed word-context pair, *l* samples are generated based on unigram distribution (i.e., the probability of each word in the data)

Negative Sampling for Skip-gram

• The new probabilistic model:

$$p(D = 1 | w, c) = \frac{1}{1 + e^{-v_c \cdot v_w}}$$

• Compare to the original model:

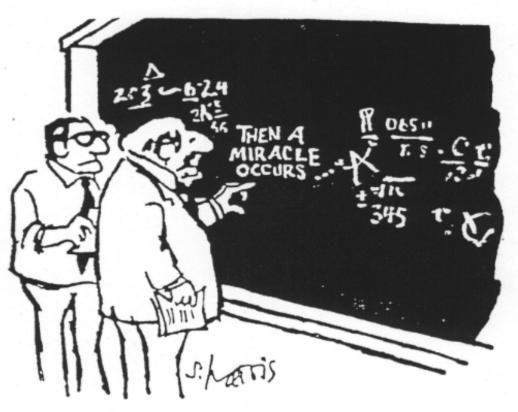
$$p(c \mid w; \theta) = \frac{e^{v_c \cdot v_w}}{\sum_{c' \in C} e^{v_{c'} \cdot v_w}}$$

• Are they equivalent?

Negative Sampling for Skip-gram

• The new probabilistic model:

$$p(D = 1 | w, c) = \frac{1}{1 + e^{-v_c \cdot v_w}}$$


• Compare to the original model:

$$p(c \mid w; \theta) = \frac{e^{v_c \cdot v_w}}{\sum_{c' \in C} e^{v_{c'} \cdot v_w}}$$

- Are they equivalent?
 - Not really, at least as far as we know it's an approximation

Word2vec The Skip-gram Model

- Optimized for word-context pairs
- To get word embedding, take the vectors $v_{\scriptscriptstyle W}$
- But, why does it work?
 - Intuitively: words that share many contexts will be similar
 - Formal:
 - Neural Word Embedding as Implicit Matrix Factorization / Levy and Goldberg 2014
 - A Latent Variable Model Approach to PMI-based Word Embeddings / Arora et al. 2016

I think you should be a little more specific, here in Step 2

Visualizations

- Word Galaxy
 - <u>http://anthonygarvan.github.io/wordgalaxy/</u>
- Embeddings for word substitution
 - <u>http://ghostweather.com/files/word2vecpride/</u>

The Skip-gram Context

Scientists from Australia discover star with a telescope

• Consider a skip-gram context with n = 2

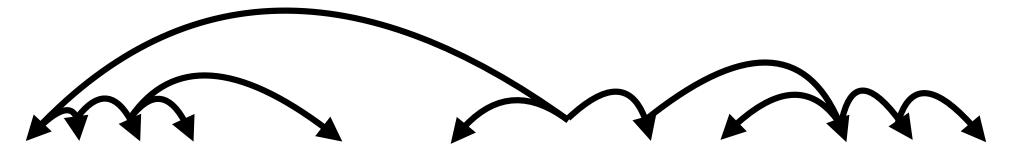
The Skip-gram Context

Scientists from Australia discover star with a telescope

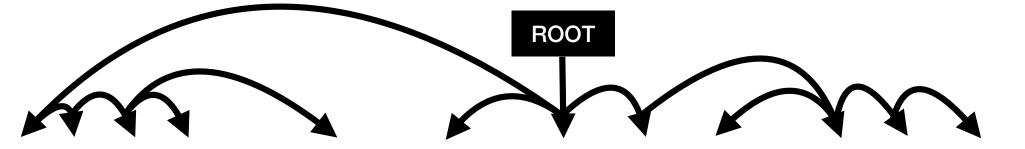
• Consider a skip-gram context with n = 2

The Skip-gram Context

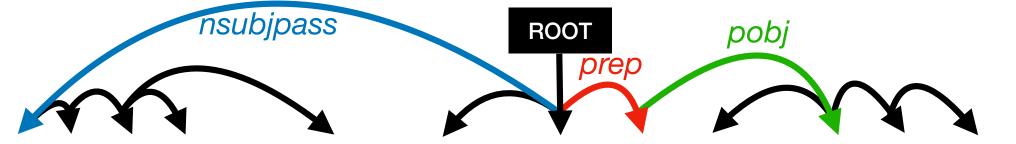
Scientists from Australia discover star with a telescope


- Consider a skip-gram context with n = 2
- Just looking at neighboring words, often doesn't capture arguments and modifiers
- Maybe just a bigger window?
- Can we use anything except adjacency to get context?

Dependency Structures A Linguistic Detour

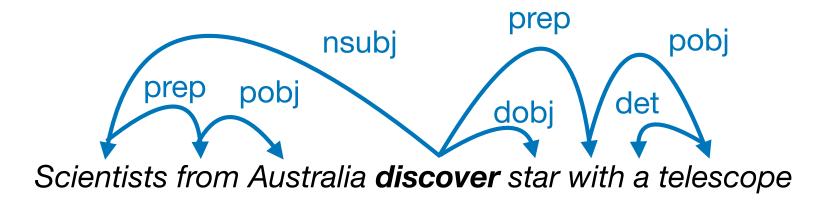

- A structural formalism of sentence structure
- Will provide a framework to think beyond adjacency contexts
 - More generally: it is model of sentence structure
- Dependency structure shows which words depend on (modify or are arguments of) which other words
- Numerous methods developed to recover them (but we won't cover them (2))

- A syntactic structure that consists of:
 - Lexical items (words)

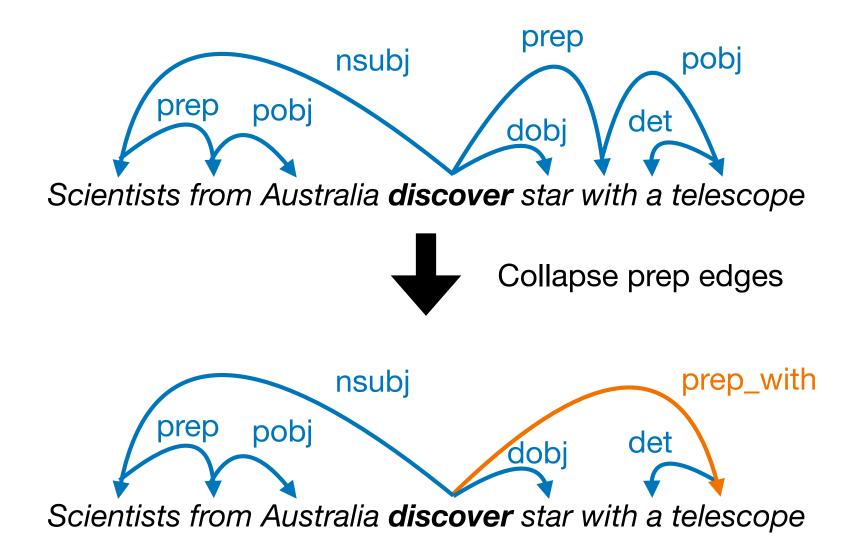

- A syntactic structure that consists of:
 - Lexical items (words)
 - Binary asymmetric relations \rightarrow dependencies
 - Arrow usually from head to modifier

- A syntactic structure that consists of:
 - Lexical items (words)
 - Binary asymmetric relations \rightarrow dependencies
- Dependencies form a tree with a standard root node

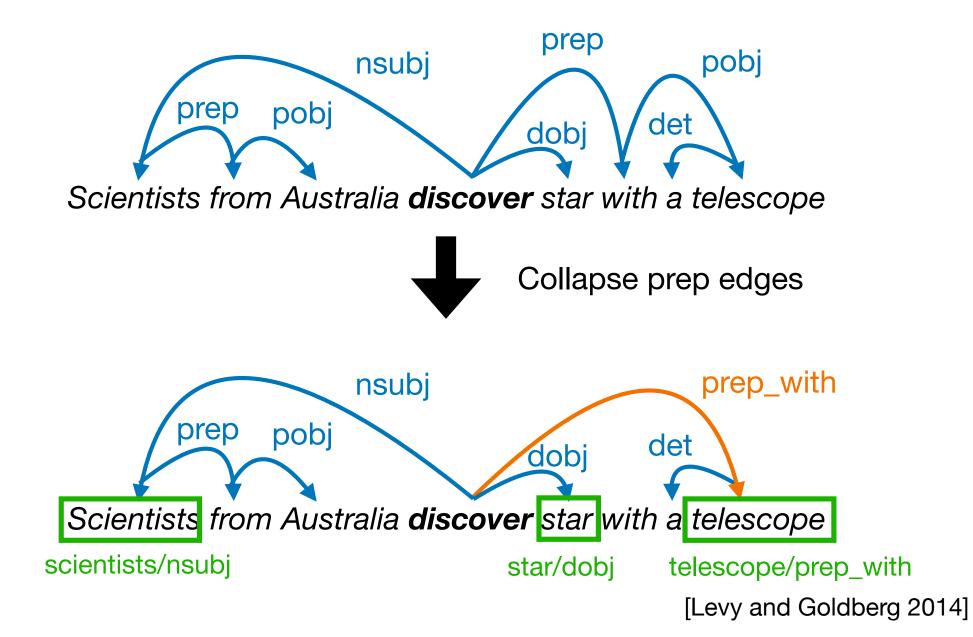
- A syntactic structure that consists of:
 - Lexical items (words)
 - Binary asymmetric relations \rightarrow dependencies
- Dependencies form a tree with a standard root node
- Dependencies are typed with names of grammatical relations

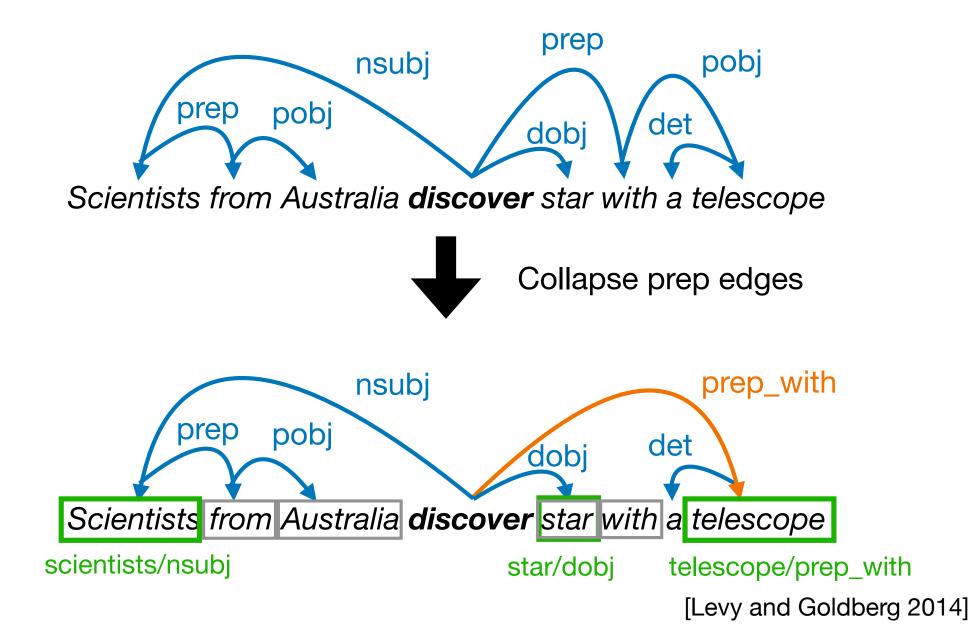

Structured Contexts

- Dependency structures allow us to consider notions of adjacency beyond just neighboring words in the text
- Because we can look at the dependency structure connectivity
- These edges can connect words at arbitrary distances
 - If they have a syntactic relation between them


Dependency Contexts

Scientists from Australia **discover** star with a telescope


Dependency Contexts


Dependency Contexts

Dependency Contexts

Dependency Contexts

| | Target Word | BoW5 |
|---------------------------------------|-----------------|--------------------------------|
| | | nightwing |
| Word2vec | | aquaman |
| | batman | catwoman |
| | | superman |
| Dependency Contexts | | manhunter |
| | | dumbledore |
| | | hallows |
| | hogwarts | half-blood |
| | | malfoy |
| What is learned? | | snape |
| What is learned: | | nondeterministic |
| | , • | non-deterministi |
| What is the cost? | turing | computability
deterministic |
| | | finite-state |
| | | gainesville |
| | | fla |
| | florida | jacksonville |
| | | tampa |
| | | lauderdale |
| | | aspect-oriented |
| | | smalltalk |
| | object-oriented | event-driven |
| | 5 | prolog |
| | | domain-specific |
| | | singing |
| | | dance |
| | | |

| nightwingsupermansupermanaquamansuperboysuperboycatwomanaquamansupergirlsupermancatwomancatwomanmanhunterbatgirlaquamandumbledoreevernightsunnydalehallowssunnydalecollinwoodhalf-bloodgarderobecalartsmalfoyblandingsgreendalenon-deterministicnon-deterministicpaulingnon-deterministicfinite-statehotellingnon-deterministicbuchilessingfinite-stateprimalityhamminggainesvilleflatexasflaalabamalouisianalauderdaletexascalifornialauderdalesapect-orientedgeorgiaobject-orientedsmalltalkevent-drivenprologdataflowdata-drivendomain-specific4glhuman-centereddancesingingsingingdancesdancesbinging | Target Word | BoW5 | BoW2 | DEPS |
|--|-----------------|-------------------|-------------------|-----------------|
| batmancatwomanaquamansupergirlsupermancatwomancatwomanmanhunterbatgirlaquamandumbledoreevernightsunnydalehallowssunnydalecollinwoodhalf-bloodgarderobecalartsmalfoyblandingsgreendalesnapecollinwoodmillfieldnondeterministicnon-deterministicpaulingnon-deterministicnon-deterministichotellingcomputabilitynondeterministichetingdeterministicbuchilessingfinite-statebuchilessingfinite-stategainesvillegainesvillegainesvillegainesvillegeorgiafloridajacksonvillegainesvilleaspect-orientedaspect-orientedcarolinaobject-orientedsmalltalkevent-drivenobject-orientedsmalltalkevent-drivendomain-specific4glhuman-centeredsingingsingingsingingflancesingingsinging | batman | nightwing | superman | superman |
| superman
manhuntercatwoman
batgirlcatwoman
aquamandumbledoreevernightsunnydalehallowssunnydalecollinwoodhalf-bloodgarderobecalartsmalfoyblandingsgreendalesnapecollinwoodmillfieldnondeterministicnon-deterministicpaulingnon-deterministicfinite-statehotellingcomputabilitynondeterministichetingdeterministicbuchilessingfinite-stateprimalityhamminggainesvilleflatexasflaalabamalouisianajacksonvillegainesvillegeorgialauderdaletexascaliforniaobject-orientedsmalltalkevent-drivenobject-orientedsmalltalkevent-drivenobject-orientedsingingdataflowdata-drivendomain-specific4glhuman-centeredsingingsingingsingingsingingdancedancesingingsinging | | aquaman | superboy | superboy |
| nnbatgirlaquamandumbledoreevernightsunnydalehallowssunnydalecollinwoodhallowsgarderobecalartshalf-bloodgarderobecalartsmalfoyblandingsgreendalesnapecollinwoodmillfieldnon-deterministicnon-deterministicpaulingnon-deterministicfinite-statehotellingcomputabilitynondeterministichetingdeterministicbuchilessingfinite-stateprimalityhammingflaalabamalouisianafloridajacksonvillegainesvilleaspect-orientedaspect-orientedcarolinaobject-orientedevent-drivendomain-specificobject-orientedjologdataflowdata-drivenflasingingsingingsingingdancesingingsingingsinging | | catwoman | aquaman | supergirl |
| dumbledoreevernightsunnydalehallowssunnydalecollinwoodhalf-bloodgarderobecalartsmalfoyblandingsgreendalesnapecollinwoodmillfieldnondeterministicnon-deterministicpaulingnon-deterministicnon-deterministichotellingnon-deterministicnondeterministichetingdeterministicfinite-statehotellingfinite-stateprimalityhamminggainesvilleflatexasflaalabamalouisianafloridajacksonvillegainesvillejacksonvillegaspet-orientedevent-drivenobject-orientedaspect-orientedevent-drivenobject-orientedsingiltalkevent-drivenobject-orientedsingingdataflowdata-drivenfinine-specificquifuman-centeredsingingsingingsingingsinging | | superman | catwoman | catwoman |
| hallowssunnydalecollinwoodhogwartshalf-bloodgarderobecalartsmalfoyblandingsgreendalesnapecollinwoodmillfieldnon-deterministicnon-deterministicpaulingnon-deterministicfinite-statehotellingcomputabilitynondeterministichetingdeterministicbuchilessingfinite-stateprimalityhamminggainesvilleflalouisianafloridajacksonvillegainesvillegeorgialauderdaletexascarolinaobject-orientedaspect-orientedsmaltalkobject-orientedobjective-crule-basedprologdataflowdata-drivendomain-specific4glhuman-centeredsingingsingingsingingsinging | | manhunter | batgirl | aquaman |
| hogwartshalf-blood
malfoygarderobe
blandingscalartsmalfoyblandingsgreendalesnapecollinwoodmillfieldnon-deterministicnon-deterministicpaulingnon-deterministicfinite-statehotellingcomputabilitynondeterministichetingdeterministicbuchilessingfinite-stateprimalityhamminggainesvilleflatexasflaalabamalouisianajacksonvillegainesvillegeorgialauderdaletexascarolinaaspect-orientedaspect-orientedcarolinaobject-orientedevent-drivendomain-specificprologdataflowdata-drivendomain-specific4glhuman-centeredsingingsingingsinging | hogwarts | dumbledore | evernight | sunnydale |
| Imalfoyblandingsgreendalesnapecollinwoodmillfieldsnapecollinwoodmillfieldnon-deterministicnon-deterministicpaulingnon-deterministicfinite-statehotellingcomputabilitynondeterministichetingdeterministicbuchilessingfinite-stateprimalityhamminggainesvilleflatexasflaalabamalouisianajacksonvillegainesvillegeorgiatampatallahasseecalifornialauderdaletexascarolinasmalltalkevent-drivendomain-specificprologdataflowdata-drivendomain-specificsingingsingingdancedancerapping | | hallows | sunnydale | collinwood |
| snapecollinwoodmillfieldnondeterministicnon-deterministicpaulingnon-deterministicfinite-statehotellingcomputabilitynondeterministichetingdeterministicbuchilessingfinite-stateprimalityhamminggainesvilleflatexasflaalabamalouisianafloridajacksonvillegainesvillegeorgiatampatallahasseecalifornialauderdaletexascarolinaobject-orientedsmalltalkevent-drivenprologdataflowdata-drivendomain-specific4glhuman-centeredsingingsingingsingingsingingdancedancefancesinging | | half-blood | garderobe | calarts |
| Image: Non-deterministicnon-deterministicnon-deterministicpaulingnon-deterministicfinite-statehotellingnon-deterministicnondeterministichetingdeterministicbuchilessingfinite-stateprimalityhamminggainesvilleflatexasflaalabamalouisianajacksonvillegainesvillegeorgiatampatallahasseecalifornialauderdaletexascarolinaobject-orientedaspect-orientedevent-drivenobject-orientedgogggidataflowdomain-specific4glhuman-centeredsingingsingingsingingsinging | | malfoy | e | C |
| turingnon-deterministicfinite-statehotellingturingcomputabilitynondeterministichetingdeterministicbuchilessingfinite-stateprimalityhamminggainesvilleflatexasflaalabamalouisianajacksonvillegainesvillegeorgiatampatallahasseecalifornialauderdaletexascarolinasmalltalkevent-drivendomain-specificobject-orientedsmalltalkevent-drivenobject-orienteddata-drivenasnogdataflowdata-drivendomain-specific4glhuman-centeredsingingsingingsingingdancedancerapping | | snape | collinwood | millfield |
| turingcomputabilitynondeterministichetingdeterministicbuchilessingfinite-stateprimalityhamminggainesvilleflatexasflaalabamalouisianafloridajacksonvillegainesvillegeorgiatampatallahasseecalifornialauderdaletexascarolinasmalltalkevent-drivendomain-specificprologdataflowdata-drivendomain-specific4glhuman-centeredsingingsingingsingingsinging | turing | nondeterministic | non-deterministic | pauling |
| deterministicbuchilessingfinite-stateprimalityhamminggainesvilleflatexasflaalabamalouisianajacksonvillegainesvillegeorgiatampatallahasseecalifornialauderdaletexascarolinasmalltalkevent-drivendomain-specificprologdataflowdata-drivendomain-specific4glhuman-centeredsingingsingingsingingsinging | | non-deterministic | finite-state | hotelling |
| finite-stateprimalityhamminggainesvilleflatexasflaalabamalouisianajacksonvillegainesvillegeorgiatampatallahasseecalifornialauderdaletexascarolinasmalltalkevent-drivendomain-specificprologdataflowdata-drivendomain-specific4glhuman-centeredsingingsingingsingingsinging | | computability | nondeterministic | heting |
| gainesvilleflatexasfloridaflaalabamalouisianajacksonvillegainesvillegeorgiatampatallahasseecalifornialauderdaletexascarolinaaspect-orientedaspect-orientedevent-drivensmalltalkevent-drivendomain-specificprologdataflowdata-drivendomain-specific4glhuman-centeredsingingsingingsingingdancedancerapping | | deterministic | buchi | lessing |
| flaalabamalouisianafloridajacksonvillegainesvillegeorgiajacksonvillegainesvillegeorgiacaliforniatampatallahasseecalifornialauderdaletexascarolinaaspect-orientedaspect-orientedevent-drivensmalltalkevent-drivendomain-specificprologdataflowdata-drivendomain-specific4glhuman-centeredsingingsingingsingingdancedancerapping | | finite-state | primality | hamming |
| floridajacksonvillegainesvillegeorgiatampatallahasseecalifornialauderdaletexascarolinaaspect-orientedaspect-orientedevent-drivensmalltalkevent-drivendomain-specificprologdataflowdata-drivendomain-specific4glhuman-centeredsingingsingingsingingdancedancerapping | florida | gainesville | fla | texas |
| tampatallahasseecalifornialauderdaletexascarolinalauderdaleaspect-orientedevent-drivenaspect-orientedaspect-orienteddomain-specificsmalltalkevent-drivendomain-specificprologdataflowdata-drivendomain-specific4glhuman-centeredsingingsingingsingingdancedancerapping | | fla | alabama | louisiana |
| Iauderdaletexascarolinalauderdaletexascarolinaaspect-orientedaspect-orientedevent-drivensmalltalkevent-drivendomain-specificobject-orientedevent-drivenobjective-crule-basedprologdataflowdata-drivendomain-specific4glhuman-centeredsingingsingingsingingdancedancerapping | | jacksonville | gainesville | georgia |
| aspect-orientedaspect-orientedevent-drivenobject-orientedsmalltalkevent-drivendomain-specificobject-orientedevent-drivenobjective-crule-basedprologdataflowdata-drivendomain-specific4glhuman-centeredsingingsingingsingingdancedancerapping | | - | tallahassee | |
| object-orientedsmalltalkevent-drivendomain-specificobject-orientedevent-drivenobjective-crule-basedprologdataflowdata-drivendomain-specific4glhuman-centeredsingingsingingsingingdancedancerapping | | lauderdale | texas | carolina |
| object-orientedevent-drivenobjective-crule-basedprologdataflowdata-drivendomain-specific4glhuman-centeredsingingsingingsingingdancedancerapping | object-oriented | - | aspect-oriented | event-driven |
| prolog
domain-specificdataflow
4gldata-driven
human-centeredsinging
dancesinging
dancesinging
rapping | | smalltalk | event-driven | domain-specific |
| Image: domain-specific4glhuman-centeredsingingsingingsingingdancedancerapping | | event-driven | objective-c | rule-based |
| singing
dancesinging
dancesinging
rapping | | 1 0 | dataflow | data-driven |
| dance dance rapping | | domain-specific | 4gl | human-centered |
| | dancing | singing | singing | |
| dancing dances dances breakdancing | | dance | dance | |
| | | dances | dances | breakdancing |
| dancers breakdancing miming | | dancers | breakdancing | miming |
| tap-dancing clowning busking | | tap-dancing | clowning | busking |

Table 1: Target words and their 5 most similar words, as induced by different embeddings. [Levy and Goldberg 2014]

Word Embeddings

How to Use Them?

- Word embeddings are often input to models of various end applications
- They provide lexical information beyond the annotated task datasets, which is often small
- Often kept fixed (i.e., not fine tuned), while the task network is trained
- Can also be input to sentence embedding models