
Cornell CS 5740: Natural Language Processing
Yoav Artzi, Spring 2023

Warming Up
Neural Network Basics

1

• A very quick introduction to neural networks

• Architecture basics and matrix notation

• Some practical tips

• Computation graphs

Table of Contents

2

• Neural network algorithms date to the 1980s,
and design trace their origin to the 1950s

- Originally inspired by early neuroscience

• Historically slow, complex, and unwieldy

• Now: term is abstract enough to encompass
almost any model – but useful!

• Dramatic shift started around 2013-15 away
from MaxEnt (linear, convex) to neural
networks (non-linear architecture, non-
convex)

A Little Bit of History
Neural Networks

3

• Non-neural ML works well because of human-
designed representations and input features

• ML becomes just optimizing weights

• Representation learning attempts to
automatically learn good features and
representations

• Deep learning attempts to learn multiple levels
of representation of increasing complexity/
abstraction

The Promise
Neural Networks

4

• Neural networks traditionally come with
their own terminology baggage

- Some of it is less common in more
recent work

• Parameters:

- Inputs:

- Weights: and

- Activation function

• If we drop the activation function,
reminds you of something?

xi

wi b

f

The Neuron
Building Blocks

5

• It gets interesting when you
connect and stack neurons

• This modularity is one of
the greatest strengths of
neural networks

• Input vs. hidden vs. output
layers

• The activations of the
hidden layers are the
learned representation

Hidden Layers
Building Blocks

6

Matrix Notation
Building Blocks

No activation/non-linearity function

a1

a2

a3

h1

h2

h3

h4

o1

o2

7

Matrix Notation
Building Blocks

No activation/non-linearity function

a1

a2

a3

h1

h2

h3

h4

o1

o2

h1 = a1W′ 11 + a2W′ 21 + a3W′ 31 + b′ 1

h4 = a1W′ 14 + a2W′ 24 + a3W′ 34 + b′ 4

h2 = a1W′ 12 + a2W′ 22 + a3W′ 32 + b′ 1
h3 = a1W′ 13 + a2W′ 23 + a3W′ 33 + b′ 1

o1 = h1W′ ′ 11 + h2W′ ′ 21 + h3W′ ′ 31 + h4W′ ′ 41 + b′ ′ 1
o2 = h1W′ ′ 12 + h2W′ ′ 22 + h3W′ ′ 32 + h4W′ ′ 42 + b′ ′ 2

8

Matrix Notation
Building Blocks

No activation/non-linearity function

a1

a2

a3

h1

h2

h3

h4

o1

o2

h1 = a1W′ 11 + a2W′ 21 + a3W′ 31 + b′ 1

h4 = a1W′ 14 + a2W′ 24 + a3W′ 34 + b′ 4

h2 = a1W′ 12 + a2W′ 22 + a3W′ 32 + b′ 1
h3 = a1W′ 13 + a2W′ 23 + a3W′ 33 + b′ 1

o1 = h1W′ ′ 11 + h2W′ ′ 21 + h3W′ ′ 31 + h4W′ ′ 41 + b′ ′ 1
o2 = h1W′ ′ 12 + h2W′ ′ 22 + h3W′ ′ 32 + h4W′ ′ 42 + b′ ′ 2

h = aW′ + b′

o = hW′ ′ + b′ ′

= (aW′ + b′)W′ ′ + b′ ′

9

Matrix Notation
Building Blocks

No activation/non-linearity function

a1

a2

a3

h1

h2

h3

h4

o1

o2

h1 = a1W′ 11 + a2W′ 21 + a3W′ 31 + b′ 1

h4 = a1W′ 14 + a2W′ 24 + a3W′ 34 + b′ 4

h2 = a1W′ 12 + a2W′ 22 + a3W′ 32 + b′ 1
h3 = a1W′ 13 + a2W′ 23 + a3W′ 33 + b′ 1

o1 = h1W′ ′ 11 + h2W′ ′ 21 + h3W′ ′ 31 + h4W′ ′ 41 + b′ ′ 1
o2 = h1W′ ′ 12 + h2W′ ′ 22 + h3W′ ′ 32 + h4W′ ′ 42 + b′ ′ 2

h = aW′ + b′

o = hW′ ′ + b′ ′

= (aW′ + b′)W′ ′ + b′ ′

a ∈ ℝ1×3

W′ ∈ ℝ3×4

W′ ′ ∈ ℝ4×2

b′ ∈ ℝ1×4

b′ ′ ∈ ℝ1×2

h ∈ ℝ1×4

o ∈ ℝ1×2

Learned

10

Activation Functions
Building Blocks

Activation (non-linearity) function is
an entry-wise function f : ℝ → ℝ

11

• What if we want the output to be a probability distribution over possible outputs?

- So far: output are just real numbers

• Normalize the output activations using

• Assume your want a distribution over (i.e.,)

• Essentially: (1) make the value positive; and (2) normalize

• Usually: no non-linearity before the

o softmax

y1, …, yn p(yi)

o =

o1
o2
⋮
on

y = softmax(o)

p(yi) = softmax(oi) =
eoi

∑n
j=1 eoj

softmax

Probabilistic Outputs
Building Blocks

12

• So far, words (and features) are atomic symbols:

- “hotel”, “conference”, “walking”, “___ing”

• But neural networks take continuous vector inputs

• How can we bridge this gap?

• One-hot vectors

• Dimensionality: size of the vocabulary

- Can be >10M for web-scale corpora

• Problems?

hotel = [0 0 0 ⋯0 0 1 0 0 0 0 0 0]
conference = [0 0 0 ⋯0 0 0 0 0 0 1 0 0]

One-hot Word Representations
Building Blocks

13

• One-hot vectors

• Problems?

- Information sharing? “hotel” vs. “hotels”

hotel = [0 0 0 ⋯0 0 1 0 0 0 0 0 0]
conference = [0 0 0 ⋯0 0 0 0 0 0 1 0 0]

One-hot Word Representations
Building Blocks

14

• Each word is represented using a dense low-dimensional vector

- Low-dimensional << vocabulary size

• If trained well, similar words will have similar vectors

• How to train? What objective to maximize?

- As part of task training (e.g., supervised training)

- Pre-training (more on this later)

Word Embeddings
Building Blocks

15

• No hidden layer → supervised

- Just like perceptron, but gradient based

• With hidden layers:

- Latent units → not convex

- What do we do?

‣ Back-propagate the gradient

‣ Based on the chain rule

‣ About the same, but no guarantees

Training Neural Networks

16

• One of the most basic neural models

• Example: sentiment classification

- Input: text document

- Classes: very positive, positive, neutral, negative, very negative

• We discussed doing this with a bag-of-words feature-based model

• What would be the neural equivalent?

- Concatenate all vectors?

‣ Problem: different documents → different input length

- Instead: sum, average, etc.

Neural Bag of Words

17

• One of the most basic neural models

• Example: sentiment classification

- Input: text document

- Classes: very positive, positive, neutral, negative, very negative

• We discussed doing this with a bag-of-words feature-based model

• What would be the neural equivalent?

- Concatenate all vectors?

‣ Problem: different documents → different input length

- Instead: sum, average, etc.

Neural Bag of Words

18

• One of the most basic neural models

• Example: sentiment classification

- Input: text document

- Classes: very positive, positive, neutral, negative, very negative

• We discussed doing this with a bag-of-words feature-based model

• What would be the neural equivalent?

- Concatenate all vectors?

‣ Problem: different documents → different input length

- Instead: sum, average, etc.

Neural Bag of Words

19

Deep Averaging Networks (Iyyer et al. 2015)
Neural Bag of Words

*It’s not common to put non-
linearity before a softmax

IMDB Sentiment Analysis

BOW + smoothing + SVM 88.23

NBOW DAN 89.4

20

• Goal: build a classifier that given a
pair of words, classify if they are
the full name of a person or not

• The classifier is a multi-layer-
perceptron with three layers

• Make a drawing!

• Write the matrix notation,
including dimensionality of
matrices (choose as you wish,
and as needed)

• What are the parameters to be
learned

Classify Word Pair

Inputs: xl, xr

Input vocabulary: 𝒱
Embedding function: ϕ : 𝒱 → ℝ256

Weight matrices: W1, W2, W3

Bias vectors: b1, b2, b3

Operations: 2 × σ : ℝ* → ℝ*,1 × softmax

21

• If you control the model (i.e., not using a pre-trained model)

- Select network structure appropriate for the problem

‣ Window vs. recurrent vs. recursive (will discuss throughout the semester)

- Parameter initialization

- Model is powerful enough?

‣ If not, make it larger

‣ Yes, so regularize, otherwise it will overfit

• Gradient checks to identify bugs

- If you build from scratch

• Know your non-linearity function and its gradient

- Example

‣

tanh(x)

∂
∂x

tanh(x) = 1 − tanh2(x)

Practical Tips

22

• Verify value of initial loss when using softmax

• Perfectly fit a single example, then mini-batch, then train

• If learning fails completely, maybe gradients stuck

- Check learning rate

- Verify parameter initialization

- Change non-linearity functions

Debugging
Practical Tips

23

• Very expressive models, can overfit easily

- It will look great on the training data, but everything else will be terrible

• Some potential cures ⛑

- Reduce model size (but not too much)

- L1 and L2 regularization

- Early stopping (e.g., patience)

- Learning rate scheduling

- Dropout (Hinton et al. 2012)

‣ Randomly set 50% of inputs in each layer to 0

Avoid Overfitting
Practical Tips

24

• The descriptive language of deep learning models

• Functional description of the required computation

• Can be instantiated to do two types of computation:

- Forward computation

- Backward computation

Computation Graphs

25

y = x>Ax+ b · x+ c

A node is a {tensor, matrix, vector, scalar} value

expression:

x

graph:

26

y = x>Ax+ b · x+ c

x

expression:

graph:

An edge represents a function argument 
(and also data dependency). They are just 
pointers to nodes.
A node with an incoming edge is a function of that
edge’s tail node.

f(u) = u>

A node knows how to compute its value and the
value of its derivative w.r.t each argument (edge)
times a derivative of an arbitrary input .@F

@f(u)

@f(u)

@u

@F
@f(u)

=

✓
@F

@f(u)

◆>

27

y = x>Ax+ b · x+ c

x

f(u) = u>

A

f(U,V) = UV

expression:

graph:

Functions can be nullary, unary, 
binary, … n-ary. Often they are unary or binary.

28

y = x>Ax+ b · x+ c

x

f(u) = u>

A

f(U,V) = UV

f(M,v) = Mv

expression:

graph:

Computation graphs are directed and acyclic (usually)

29

y = x>Ax+ b · x+ c

x

f(u) = u>

A

f(U,V) = UV

f(M,v) = Mv

x A

f(x,A) = x>Ax

@f(x,A)

@A
= xx>

@f(x,A)

@x
= (A> +A)x

expression:

graph:

30

y = x>Ax+ b · x+ c

x

f(u) = u>

A

f(U,V) = UV

f(M,v) = Mv

b

f(u,v) = u · v

c

f(x1, x2, x3) =
X

i

xi

expression:

graph:

31

y = x>Ax+ b · x+ c

x

f(u) = u>

A

f(U,V) = UV

f(M,v) = Mv

b

f(u,v) = u · v

c

y
f(x1, x2, x3) =

X

i

xi

expression:

graph:

variable names are just labelings of nodes.
32

• Graph construction

• Forward propagation

- Loop over nodes in topological order

‣ Compute the value of the node given its inputs

- Given my inputs, make a prediction (or compute an “error” with respect to a “target
output”)

• Backward propagation

- Loop over the nodes in reverse topological order starting with a final goal node

‣ Compute derivatives of final goal node value with respect to each edge’s tail node

- How does the output change if I make a small change to the inputs?

Algorithms
Computation Graphs

33

x

f(u) = u>

A

f(U,V) = UV

f(M,v) = Mv

b

f(u,v) = u · v

c

f(x1, x2, x3) =
X

i

xi
graph:

Forward Propagation

34

x

f(u) = u>

A

f(U,V) = UV

f(M,v) = Mv

b

f(u,v) = u · v

c

f(x1, x2, x3) =
X

i

xi
graph:

Forward Propagation

35

x

f(u) = u>

A

f(U,V) = UV

f(M,v) = Mv

b

f(u,v) = u · v

c

f(x1, x2, x3) =
X

i

xi
graph:

Forward Propagation

36

x

f(u) = u>

A

f(U,V) = UV

f(M,v) = Mv

b

f(u,v) = u · v

c

f(x1, x2, x3) =
X

i

xi
graph:

x>

Forward Propagation

37

x

f(u) = u>

A

f(U,V) = UV

f(M,v) = Mv

b

f(u,v) = u · v

c

f(x1, x2, x3) =
X

i

xi
graph:

x>

x>A

Forward Propagation

38

x

f(u) = u>

A

f(U,V) = UV

f(M,v) = Mv

b

f(u,v) = u · v

c

f(x1, x2, x3) =
X

i

xi
graph:

x>

x>A

b · x

Forward Propagation

39

x

f(u) = u>

A

f(U,V) = UV

f(M,v) = Mv

b

f(u,v) = u · v

c

f(x1, x2, x3) =
X

i

xi
graph:

x>

x>A

b · x

x>Ax

Forward Propagation

40

x

f(u) = u>

A

f(U,V) = UV

f(M,v) = Mv

b

f(u,v) = u · v

c

f(x1, x2, x3) =
X

i

xi
graph:

x>

x>A

b · x

x>Ax

Forward Propagation

x>Ax+ b · x+ c

41

h1 = σ([ϕ(xl); ϕ(xr)]W1 + b1)
h2 = σ(h1W2 + b2)
p = softmax(h2W3 + b3)

Draw the Computation Graph
MLP

42

• Static declaration

- Phase 1: define an architecture 
(maybe with some primitive flow control like loops and conditionals)

- Phase 2: run a bunch of data through it to train the model and/or make
predictions

• Dynamic declaration (a.k.a define-by-run)

- Graph is defined implicitly (e.g., using operator overloading) as the forward
computation is executed

- Graph is constructed dynamically

- This allows incorporating conditionals and loops into the network
definitions easily

Two Software Models
Constructing Graphs

43

• Two senses to processing your data in batch

- Computing gradients for more than one example at a time to
update parameters during learning

- Processing examples together to utilize all available resources

• CPU: made of a small number of cores, so can handle some
amount of work in parallel

• GPU: made of thousands of small cores, so can handle a lot of
work in parallel

• Process multiple examples together to use all available cores

Batching

44

• Relatively easy when the network looks exactly the same for all
examples

• More complex with language data: documents/sentences/words
have different lengths

• Frameworks provide different methods to help common cases,
but still require work on the developer side

• Key concept is broadcasting:  
https://pytorch.org/docs/stable/notes/broadcasting.html

Batching

45

https://pytorch.org/docs/stable/notes/broadcasting.html

Batching
MLP Sketch

46

h = tanh(Wx+ b)

y = Vh+ a

x

f(M,v) = Mv

W

b

f(u,v) = u+ v
h

f(u) = tanh(u) V

a

f(M,v) = Mv

f(u,v) = u+ v

• Input and intermediate results
become tensors — batch is
another dimension!

• Do not add batch dimension
of parameters! What happens
then?

Batching
Rough Notation Sketch

47

X(j) = [x1, …, xn(j)], xi ∈ 1,…, |𝒱 |

a =
1

|X(j) |
sum (ϕ(X(j)))

h1 = σ(W1a + b1)
h2 = W2h1 + b2

p = softmax(h2)

X′ (j) = [x′ 1, …, x′ M], x′ i = {xi i ≤ n(j)

0 else
B = [X′ (j), …, X′ (j+B)]

a = [
1

n(j)
, …,

1
n(j+B)

]sum (ϕ(B))
h1 = σ(W1a + b1)
h2 = W2h1 + b2

p = softmax(h2)

No b
atc

hin
g

Batc
hin

g

Not accurate
notation, for
illustration only

• You have to get certain
operations right, such as

• But PyTorch’s broadcasting
sorts out most operations

sum

• Complex networks may
include different parts with
varying length (more about
this later)

• In the extreme, it may be
complex to batch
complete examples this
way

• But: you can still batch
sub-parts across
examples, so you alternate
between batched and non-
batched computations

Complex Network Architectures
Batching

48

Sentences

Alice gave a message to Bob
PPNP

VP

VP

S

Documents
This film was completely unbelievable.

The characters were wooden and the plot was absurd.

That being said, I liked it.

We thank the following sources for presentation materials:

• University of Washington CSE 517 by Luke Zettlemoyer

• Berkeley CS 288 by Alane Suhr and Dan Klein (and older
versions of the class by Dan Klein)

• Stanford CS 124 by Dan Jurafsky

Computation graph slides were adapted from Practical Neural
Networks for NLP / Chris Dyer, Yoav Goldberg, Graham Neubig /
EMNLP 2016

Acknowledgements

49

https://github.com/clab/dynet_tutorial_examples
https://github.com/clab/dynet_tutorial_examples
https://github.com/clab/dynet_tutorial_examples
https://github.com/clab/dynet_tutorial_examples

