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Warming Up
Neural Network Basics

1



• A very quick introduction to neural networks


• Architecture basics and matrix notation


• Some practical tips


• Computation graphs

Table of Contents
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• Neural network algorithms date to the 1980s, 
and design trace their origin to the 1950s


- Originally inspired by early neuroscience


• Historically slow, complex, and unwieldy


• Now: term is abstract enough to encompass 
almost any model – but useful!


• Dramatic shift started around 2013-15 away 
from MaxEnt (linear, convex) to neural 
networks (non-linear architecture, non-
convex)

A Little Bit of History
Neural Networks
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• Non-neural ML works well because of human-
designed representations and input features


• ML becomes just optimizing weights


• Representation learning attempts to 
automatically learn good features and 
representations


• Deep learning attempts to learn multiple levels 
of representation of increasing complexity/
abstraction

The Promise
Neural Networks
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• Neural networks traditionally come with 
their own terminology baggage


- Some of it is less common in more 
recent work


• Parameters: 


- Inputs: 


- Weights:  and 


- Activation function 


• If we drop the activation function, 
reminds you of something?
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The Neuron
Building Blocks
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• It gets interesting when you 
connect and stack neurons


• This modularity is one of 
the greatest strengths of 
neural networks


• Input vs. hidden vs. output 
layers


• The activations of the 
hidden layers are the 
learned representation

Hidden Layers
Building Blocks
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Matrix Notation
Building Blocks

No activation/non-linearity function
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Matrix Notation
Building Blocks

No activation/non-linearity function

a1

a2

a3

h1

h2

h3

h4

o1

o2

h1 = a1W′ 11 + a2W′ 21 + a3W′ 31 + b′ 1

h4 = a1W′ 14 + a2W′ 24 + a3W′ 34 + b′ 4

h2 = a1W′ 12 + a2W′ 22 + a3W′ 32 + b′ 1
h3 = a1W′ 13 + a2W′ 23 + a3W′ 33 + b′ 1

o1 = h1W′ ′ 11 + h2W′ ′ 21 + h3W′ ′ 31 + h4W′ ′ 41 + b′ ′ 1
o2 = h1W′ ′ 12 + h2W′ ′ 22 + h3W′ ′ 32 + h4W′ ′ 42 + b′ ′ 2
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Matrix Notation
Building Blocks

No activation/non-linearity function

a1

a2

a3

h1

h2

h3

h4

o1

o2

h1 = a1W′ 11 + a2W′ 21 + a3W′ 31 + b′ 1

h4 = a1W′ 14 + a2W′ 24 + a3W′ 34 + b′ 4

h2 = a1W′ 12 + a2W′ 22 + a3W′ 32 + b′ 1
h3 = a1W′ 13 + a2W′ 23 + a3W′ 33 + b′ 1

o1 = h1W′ ′ 11 + h2W′ ′ 21 + h3W′ ′ 31 + h4W′ ′ 41 + b′ ′ 1
o2 = h1W′ ′ 12 + h2W′ ′ 22 + h3W′ ′ 32 + h4W′ ′ 42 + b′ ′ 2

h = aW′ + b′ 

o = hW′ ′ + b′ ′ 

= (aW′ + b′ )W′ ′ + b′ ′ 
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Matrix Notation
Building Blocks

No activation/non-linearity function

a1

a2

a3

h1

h2

h3

h4

o1

o2

h1 = a1W′ 11 + a2W′ 21 + a3W′ 31 + b′ 1

h4 = a1W′ 14 + a2W′ 24 + a3W′ 34 + b′ 4

h2 = a1W′ 12 + a2W′ 22 + a3W′ 32 + b′ 1
h3 = a1W′ 13 + a2W′ 23 + a3W′ 33 + b′ 1

o1 = h1W′ ′ 11 + h2W′ ′ 21 + h3W′ ′ 31 + h4W′ ′ 41 + b′ ′ 1
o2 = h1W′ ′ 12 + h2W′ ′ 22 + h3W′ ′ 32 + h4W′ ′ 42 + b′ ′ 2

h = aW′ + b′ 

o = hW′ ′ + b′ ′ 

= (aW′ + b′ )W′ ′ + b′ ′ 

a ∈ ℝ1×3

W′ ∈ ℝ3×4

W′ ′ ∈ ℝ4×2

b′ ∈ ℝ1×4

b′ ′ ∈ ℝ1×2

h ∈ ℝ1×4

o ∈ ℝ1×2

Learned
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Activation Functions
Building Blocks

Activation (non-linearity) function is 
an entry-wise function f : ℝ → ℝ
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• What if we want the output to be a probability distribution over possible outputs? 


- So far: output are just real numbers


• Normalize the output activations  using 


• Assume your want a distribution over  (i.e., )


            


• Essentially: (1) make the value positive; and (2) normalize


• Usually: no non-linearity before the 

o softmax

y1, …, yn p(yi)

o =

o1
o2
⋮
on

y = softmax(o)

p(yi) = softmax(oi) =
eoi

∑n
j=1 eoj

softmax

Probabilistic Outputs
Building Blocks
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• So far, words (and features) are atomic symbols:


- “hotel”, “conference”, “walking”, “___ing”


• But neural networks take continuous vector inputs


• How can we bridge this gap?


• One-hot vectors


          



• Dimensionality: size of the vocabulary


- Can be >10M for web-scale corpora


• Problems?

hotel = [0 0 0 ⋯0 0 1 0 0 0 0 0 0]
conference = [0 0 0 ⋯0 0 0 0 0 0 1 0 0]

One-hot Word Representations
Building Blocks
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• One-hot vectors


          



• Problems?


- Information sharing? “hotel” vs. “hotels”

hotel = [0 0 0 ⋯0 0 1 0 0 0 0 0 0]
conference = [0 0 0 ⋯0 0 0 0 0 0 1 0 0]

One-hot Word Representations
Building Blocks
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• Each word is represented using a dense low-dimensional vector


- Low-dimensional << vocabulary size


• If trained well, similar words will have similar vectors


• How to train? What objective to maximize? 


- As part of task training (e.g., supervised training)


- Pre-training (more on this later)

Word Embeddings
Building Blocks
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• No hidden layer → supervised


- Just like perceptron, but gradient based


• With hidden layers:


- Latent units → not convex


- What do we do?


‣ Back-propagate the gradient 


‣ Based on the chain rule


‣ About the same, but no guarantees

Training Neural Networks
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• One of the most basic neural models


• Example: sentiment classification 


- Input: text document


- Classes: very positive, positive, neutral, negative, very negative


• We discussed doing this with a bag-of-words feature-based model


• What would be the neural equivalent? 


- Concatenate all vectors?


‣ Problem: different documents → different input length


- Instead: sum, average, etc.

Neural Bag of Words
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• One of the most basic neural models


• Example: sentiment classification 


- Input: text document


- Classes: very positive, positive, neutral, negative, very negative


• We discussed doing this with a bag-of-words feature-based model


• What would be the neural equivalent? 


- Concatenate all vectors?


‣ Problem: different documents → different input length


- Instead: sum, average, etc.

Neural Bag of Words
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• One of the most basic neural models


• Example: sentiment classification 


- Input: text document


- Classes: very positive, positive, neutral, negative, very negative


• We discussed doing this with a bag-of-words feature-based model


• What would be the neural equivalent? 


- Concatenate all vectors?


‣ Problem: different documents → different input length


- Instead: sum, average, etc.

Neural Bag of Words
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Deep Averaging Networks (Iyyer et al. 2015)
Neural Bag of Words

*It’s not common to put non-
linearity before a softmax

IMDB Sentiment Analysis

BOW + smoothing + SVM 88.23

NBOW DAN 89.4
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• Goal: build a classifier that given a 
pair of words, classify if they are 
the full name of a person or not


• The classifier is a multi-layer-
perceptron with three layers


• Make a drawing!


• Write the matrix notation, 
including dimensionality of 
matrices (choose as you wish, 
and as needed)


• What are the parameters to be 
learned

Classify Word Pair

Inputs: xl, xr

Input vocabulary: 𝒱
Embedding function: ϕ : 𝒱 → ℝ256

Weight matrices: W1, W2, W3

Bias vectors: b1, b2, b3

Operations: 2 × σ : ℝ* → ℝ*,1 × softmax
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• If you control the model (i.e., not using a pre-trained model)


- Select network structure appropriate for the problem


‣ Window vs. recurrent vs. recursive (will discuss throughout the semester)


- Parameter initialization


- Model is powerful enough?


‣ If not, make it larger 


‣ Yes, so regularize, otherwise it will overfit


• Gradient checks to identify bugs


- If you build from scratch


• Know your non-linearity function and its gradient


- Example 


‣

tanh(x)

∂
∂x

tanh(x) = 1 − tanh2(x)

Practical Tips
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• Verify value of initial loss when using softmax


• Perfectly fit a single example, then mini-batch, then train


• If learning fails completely, maybe gradients stuck


- Check learning rate


- Verify parameter initialization


- Change non-linearity functions

Debugging
Practical Tips
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• Very expressive models, can overfit easily


- It will look great on the training data, but everything else will be terrible


• Some potential cures ⛑


- Reduce model size (but not too much)


- L1 and L2 regularization


- Early stopping (e.g., patience)


- Learning rate scheduling


- Dropout (Hinton et al. 2012)


‣ Randomly set 50% of inputs in each layer to 0

Avoid Overfitting
Practical Tips
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• The descriptive language of deep learning models


• Functional description of the required computation


• Can be instantiated to do two types of computation:


- Forward computation


- Backward computation

Computation Graphs
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y = x>Ax+ b · x+ c

A node is a {tensor, matrix, vector, scalar} value

expression:

x

graph:
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y = x>Ax+ b · x+ c

x

expression:

graph:

An edge represents a function argument 
(and also data dependency). They are just 
pointers to nodes.
A node with an incoming edge is a function of that 
edge’s tail node.

f(u) = u>

A node knows how to compute its value and the 
value of its derivative w.r.t each argument (edge) 
times a derivative of an arbitrary input       .@F

@f(u)

@f(u)

@u

@F
@f(u)

=

✓
@F

@f(u)

◆>
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y = x>Ax+ b · x+ c

x

f(u) = u>

A

f(U,V) = UV

expression:

graph:

Functions can be nullary, unary, 
binary, … n-ary. Often they are unary or binary.
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y = x>Ax+ b · x+ c

x

f(u) = u>

A

f(U,V) = UV

f(M,v) = Mv

expression:

graph:

Computation graphs are directed and acyclic (usually)
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y = x>Ax+ b · x+ c

x

f(u) = u>

A

f(U,V) = UV

f(M,v) = Mv

x A

f(x,A) = x>Ax

@f(x,A)

@A
= xx>

@f(x,A)

@x
= (A> +A)x

expression:

graph:
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y = x>Ax+ b · x+ c

x

f(u) = u>

A

f(U,V) = UV

f(M,v) = Mv

b

f(u,v) = u · v

c

f(x1, x2, x3) =
X

i

xi

expression:

graph:
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y = x>Ax+ b · x+ c

x

f(u) = u>

A

f(U,V) = UV

f(M,v) = Mv

b

f(u,v) = u · v

c

y
f(x1, x2, x3) =

X

i

xi

expression:

graph:

variable names are just labelings of nodes.
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• Graph construction 

• Forward propagation 

- Loop over nodes in topological order


‣ Compute the value of the node given its inputs


- Given my inputs, make a prediction (or compute an “error” with respect to a “target 
output”)


• Backward propagation 

- Loop over the nodes in reverse topological order starting with a final goal node


‣ Compute derivatives of final goal node value with respect to each edge’s tail node


- How does the output change if I make a small change to the inputs?

Algorithms
Computation Graphs
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x

f(u) = u>

A

f(U,V) = UV

f(M,v) = Mv

b

f(u,v) = u · v

c

f(x1, x2, x3) =
X

i

xi
graph:

Forward Propagation
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x

f(u) = u>

A

f(U,V) = UV

f(M,v) = Mv

b

f(u,v) = u · v

c

f(x1, x2, x3) =
X

i

xi
graph:

Forward Propagation
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x

f(u) = u>

A

f(U,V) = UV

f(M,v) = Mv

b

f(u,v) = u · v

c

f(x1, x2, x3) =
X

i

xi
graph:

Forward Propagation
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x

f(u) = u>

A

f(U,V) = UV

f(M,v) = Mv

b

f(u,v) = u · v

c

f(x1, x2, x3) =
X

i

xi
graph:

x>

Forward Propagation
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x

f(u) = u>

A

f(U,V) = UV

f(M,v) = Mv

b

f(u,v) = u · v

c

f(x1, x2, x3) =
X

i

xi
graph:

x>

x>A

Forward Propagation
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x

f(u) = u>

A

f(U,V) = UV

f(M,v) = Mv

b

f(u,v) = u · v

c

f(x1, x2, x3) =
X

i

xi
graph:

x>

x>A

b · x

Forward Propagation
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x

f(u) = u>

A

f(U,V) = UV

f(M,v) = Mv

b

f(u,v) = u · v

c

f(x1, x2, x3) =
X

i

xi
graph:

x>

x>A

b · x

x>Ax

Forward Propagation
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x

f(u) = u>

A

f(U,V) = UV

f(M,v) = Mv

b

f(u,v) = u · v

c

f(x1, x2, x3) =
X

i

xi
graph:

x>

x>A

b · x

x>Ax

Forward Propagation

x>Ax+ b · x+ c
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h1 = σ([ϕ(xl); ϕ(xr)]W1 + b1)
h2 = σ(h1W2 + b2)
p = softmax(h2W3 + b3)

Draw the Computation Graph
MLP
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• Static declaration


- Phase 1: define an architecture 
(maybe with some primitive flow control like loops and conditionals)


- Phase 2: run a bunch of data through it to train the model and/or make 
predictions


• Dynamic declaration (a.k.a define-by-run)


- Graph is defined implicitly (e.g., using operator overloading) as the forward 
computation is executed 


- Graph is constructed dynamically 


- This allows incorporating conditionals and loops into the network 
definitions easily

Two Software Models
Constructing Graphs
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• Two senses to processing your data in batch


- Computing gradients for more than one example at a time to 
update parameters during learning


- Processing examples together to utilize all available resources


• CPU: made of a small number of cores, so can handle some 
amount of work in parallel


• GPU: made of thousands of small cores, so can handle a lot of 
work in parallel


• Process multiple examples together to use all available cores

Batching
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• Relatively easy when the network looks exactly the same for all 
examples 


• More complex with language data: documents/sentences/words 
have different lengths


• Frameworks provide different methods to help common cases, 
but still require work on the developer side


• Key concept is broadcasting:  
https://pytorch.org/docs/stable/notes/broadcasting.html

Batching
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Batching
MLP Sketch

46

h = tanh(Wx+ b)

y = Vh+ a

x

f(M,v) = Mv

W

b

f(u,v) = u+ v
h

f(u) = tanh(u) V

a

f(M,v) = Mv

f(u,v) = u+ v

• Input and intermediate results 
become tensors — batch is 
another dimension!

• Do not add batch dimension 
of parameters! What happens 
then? 



Batching
Rough Notation Sketch
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X( j) = [x1, …, xn( j)], xi ∈ 1,…, |𝒱 |

a =
1

|X( j) |
sum (ϕ(X( j)))

h1 = σ(W1a + b1)
h2 = W2h1 + b2

p = softmax(h2)

X′ ( j) = [x′ 1, …, x′ M], x′ i = {xi i ≤ n( j)

0 else
B = [X′ ( j), …, X′ ( j+B)]

a = [
1

n( j)
, …,

1
n( j+B)

]sum (ϕ(B))
h1 = σ(W1a + b1)
h2 = W2h1 + b2

p = softmax(h2)

No b
atc

hin
g

Batc
hin

g

Not accurate 
notation, for 
illustration only

• You have to get certain 
operations right, such as 


• But PyTorch’s broadcasting 
sorts out most operations

sum



• Complex networks may 
include different parts with 
varying length (more about 
this later)


• In the extreme, it may be 
complex to batch 
complete examples this 
way


• But: you can still batch 
sub-parts across 
examples, so you alternate 
between batched and non-
batched computations

Complex Network Architectures
Batching
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Sentences

Alice gave a message to Bob
PPNP

VP

VP

S

Documents
This film was completely unbelievable.

The characters were wooden and the plot was absurd.

That being said, I liked it.



We thank the following sources for presentation materials:


• University of Washington CSE 517 by Luke Zettlemoyer


• Berkeley CS 288 by Alane Suhr and Dan Klein (and older 
versions of the class by Dan Klein)


• Stanford CS 124 by Dan Jurafsky


Computation graph slides were adapted from Practical Neural 
Networks for NLP / Chris Dyer, Yoav Goldberg, Graham Neubig / 
EMNLP 2016
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